Основы электродинамики Резонансные явления в колебательном контуре

Свободные затухающие колебания. Добротность колебательного контура.

Всякий реальный колебательный контур обладает сопротивлением (рис.16.3). Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепло, вследствие чего колебания затухают.

Рис.16.3. Колебательный RLC-контур.

Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени:

 

или, поскольку,

.

Введя обозначение

 ,

этому уравнению можно придать вид:

,

где .

Решение полученного уравнения имеет вид:

 


где

 


Мы видим, что частота свободных затухающих колебаний ω′ меньше собственной частоты ω0. Подставив значения ω0 и β, получим:

Амплитуда затухающих колебаний заряда конденсатора q0(t) уменьшается со временем по экспоненциальному закону (рис.16.4). Коэффициент β называется коэффициентом затухания.

Рис.16.4. Изменение заряда конденсатора со временем в RLC-контуре.

Затухание колебаний принято характеризовать декрементом колебаний λ, определяемым как:

.

Легко видеть, что декремент колебаний обратен по величине числу колебаний Ne, совершаемых за время, в течение которого амплитуда колебаний уменьшается в е раз: λ=1/Ne. Добротностью колебательного контура называется величина:

Из этой формулы видно, что добротность тем выше, чем меньше коэффициент затухания β. При малых затуханиях (λ<<1) можно приближенно считать, что

.

Амплитуда тока в контуре, как и заряд на конденсаторе, убывает со временем по закону . Энергия W, запасенная в контуре, пропорциональна квадрату амплитуды тока (или квадрату напряжения на конденсаторе). Следовательно, W убывает со временем по закону e-2βt. Относительное уменьшение энергии за период колебания Т (при малом затухании) есть:

.

Таким образом, потери энергии в колебательном контуре тем меньше, чем выше его добротность.

Постоянный электрический ток. Если в проводнике создать постоянное электрическое поле, свободные заряды будут двигаться под действием электростатических сил. Назовем электрическим током направленное движение заряженных частиц. Основной характеристикой тока является скалярная величина, называемая силой тока и векторная величина, называемая плотностью тока. Сила тока - это величина, численно равная заряду, проходящему через сечение проводника за единицу времени.
Выполнение чертежа общего вида http://ficlas.ru/ Свободные затухающие колебания