Расчёт трёхфазной цепи Топологические методы расчета

Основы электротехники задачи поТОЭ

Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих

В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчет токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.

В качестве примера рассмотрим определение тока однофазного короткого замыкания на землю в заданной точке простейшей энергосистемы. Символьная схема энергосистемы показана на рис. 110. Короткое замыкание фазы А на землю происходит в конце линии электропередачи.



В соответствии с теоремой о компенсации заменим (мысленно) несимметричный участок в точке короткого замыкания несимметричным трехфазным генератором (UA, UB, UC, причем UA =0). Несимметричную систему векторов напряжений разложим (мысленно) на симметричные составляющие UA1, UA2, UA0. Для каждой из симметричных составляющих схема цепи совершенно симметрична и может быть представлена в однофазном виде. Поэтому составляются однофазные схемы для прямой (рис. 111), обратной (рис. 112) и нулевой (рис. 113) последовательностей.

Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока &в виде алгебраической суммы составляющих токов, вызванных каждой из ЭДС ветвей в отдельности. Поскольку систему независимых контуров всегда можно выбрать так, что рассматриваемая h-я ветвь войдет только в один -й контур, т.е. контурный ток &будет равен действительному току &h-й ветви, то принцип наложения справедлив для токов &любых ветвей и, следовательно, справедливость принципа наложения доказана.

Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого полученные результаты для соответствующих ветвей суммируются – это и будут искомые токи в ветвях исходной цепи.

В качестве примера использования метода наложения определим ток во второй ветви схемы на рис. 1,а.

Принимая источники в цепи на рис. 1,а идеальными и учитывая, что у идеального источника ЭДС внутреннее сопротивление равно нулю, а у идеального источника тока – бесконечности, в соответствии с методом наложения приходим к расчетным схемам на рис. 1,б…1,г.

В этих цепях

;& ;& ,

где ; ; .

Таким образом,

.

В любой электрической схеме можно мысленно выделить какую-то одну ветвь, а всю остальную часть схемы, независимо от структуры и сложности, условно изобразить прямоугольником, который представляет собой так называемый двухполюсник.

 Таким образом, двухполюсник - это обобщённое название схемы, которая двумя выходными зажимами (полюсами) присоединена к выделенной ветви. Если в двухполюснике есть источник Э.Д.С. или тока, то такой двухполюсник называют активным. Если в двухполюснике нет источника Э.Д.С. или тока, то его называют пассивным.


Метод законов Кирхгофа