Расчёт трёхфазной цепи Топологические методы расчета

Основы электротехники задачи поТОЭ

Используя поворотный множитель “a” и “a2”, выразим все слагаемые правой части уравнений через симметричные составляющие фазы А:

 

Умножим все члены уравнения (2) на “a”, а все члены уравнения (3) на “a2”, сложим все три уравнения почленно и получим:

Из полученного уравнения следует формула для выделения симметричной составляющей прямой последовательности из несимметричной системы векторов:

.

Умножим все члены уравнения (2) на “a2”, а все члены уравнения (3) на “a”, сложим все три уравнения почленно и получим:

Из полученного уравнения следует формула для выделения симметричной составляющей обратной последовательности из несимметричной системы векторов:

.

Сложим все три уравнения (1), (2) и (3) почленно и получим:

.

Из полученного уравнения следует формула для выделения симметричной составляющей нулевой последовательности из несимметричной системы вектор:

.

Полученные формулы применяются на практике для разложения несимметричных трехфазных систем векторов на симметричные составляющие.

Таким образом, согласно (13) воздушный трансформатор со стороны первичной обмотки может рассматриваться как двухполюсник с сопротивлением .

Баланс мощностей в цепях с индуктивно связанными элементами

Пусть имеем схему по рис. 4, где А – некоторый активный четырехполюсник. Для данной цепи можно записать

;

.

Обозначим токи &как: ; .

Тогда для комплексов полных мощностей первой и второй ветвей соответственно можно записать:

;

.

Рассмотрим в этих уравнениях члены со взаимной индуктивностью:

(14)

&.

(15)

где .

Из (14) и (15) вытекает, что

; &

(16)

.

(17)

В практических расчётах часто нет необходимости знать режимы работы всех элементов сложной цепи, но ставится задача исследовать режимы работы одной определённой ветви.

При расчёте сложной электрической цепи приходится выполнять значительную вычислительную работу даже в том случае, когда требуется определить ток в одной ветви. Объём этой работы в несколько раз увеличивается, если необходимо установить изменение тока, напряжения, мощности при изменении сопротивления данной ветви, так как вычисления нужно производить несколько раз, задаваясь различными значениями сопротивления.


Метод законов Кирхгофа