Расчёт трёхфазной цепи Топологические методы расчета

Основы электротехники задачи поТОЭ

Для измерения активной мощности всей трехфазной цепи в зависимости от схемы соединения фаз нагрузки и ее характера применяются различные схемы включения измерительных приборов.

Для измерения активной мощности симметричной трехфазной цепи применяется схема с одним ваттметром, который включается в одну из фаз и измеряет активную мощность только этой фазы (рис. 99). Активная мощность всей цепи получается путем умножения показания ваттметра на число фаз: . Схема с одним ваттметром может быть использована только для ориентированной оценки мощности и неприменима для точных и коммерческих измерений.

Для измерения активной мощности в четырехпроводных трехфазных цепях (при наличии нулевого провода) применяется схема с тремя приборами (рис. 100), в которой производится измерение активной мощности каждой фазы в отдельности, а мощность всей цепи определяется как сумма показаний трех ваттметров:

.

 

Для измерения активной мощности в трехпроводных трехфазных цепях (при отсутствии нулевого провода) применяется схема с двумя приборами (рис. 101).

 

При отсутствии нулевого провода линейные (фазные) ток связаны между собой уравнением 1-го закона Кирхгофа: . Сумма показаний двух ваттметров равна:

Таким образом, сумма показаний двух ваттметров равна активной трехфазной мощности, при этом показание каждого прибора в отдельности зависит не только величины нагрузки но и от ее характера.

На рис. 102 показана векторная диаграмма токов и напряжений для симметричной нагрузки. Из диаграммы следует, что показания отдельных ваттметров могут быть определены по формулам:

,

.

Методы расчета, основанные на свойствах линейных цепей.

Выбор того или иного метода расчета электрической цепи в конечном итоге определяется целью решаемой задачи. Поэтому анализ линейной цепи не обязательно должен осуществляться с помощью таких общих методов расчета, как метод контурных токов или узловых потенциалов. Ниже будут рассмотрены методы, основанные на свойствах линейных электрических цепей и позволяющие при определенных постановках задач решить их более экономично.

Метод наложения

Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными.

Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности.

Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается соотношением

.

(1)

Здесь &- комплекс входной проводимости k – й ветви, численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях; &- комплекс взаимной& проводимости k – й и i– й ветвей, численно равный отношению тока в k – й ветви и ЭДС в i– й ветви при равных нулю ЭДС в остальных ветвях.

Входные и взаимные проводимости можно определить экспериментально или аналитически, используя их указанную смысловую трактовку, при этом& , что непосредственно вытекает из свойства взаимности (см. ниже).

Аналогично определяются коэффициенты передачи тока , которые в отличие от проводимостей являются величинами безразмерными.

Доказательство принципа наложения можно осуществить на основе метода контурных токов.

Если решить систему уравнений, составленных по методу контурных токов, относительно любого контурного тока, например , то получим

, &

(2)

где &- определитель системы уравнений, составленный по методу контурных токов; &- алгебраическое дополнение определителя .

В практических расчётах часто нет необходимости знать режимы работы всех элементов сложной цепи, но ставится задача исследовать режимы работы одной определённой ветви.

При расчёте сложной электрической цепи приходится выполнять значительную вычислительную работу даже в том случае, когда требуется определить ток в одной ветви. Объём этой работы в несколько раз увеличивается, если необходимо установить изменение тока, напряжения, мощности при изменении сопротивления данной ветви, так как вычисления нужно производить несколько раз, задаваясь различными значениями сопротивления.


Метод законов Кирхгофа