Расчёт трёхфазной цепи Топологические методы расчета

Основы электротехники задачи поТОЭ

В результате расчетов определяются токи и напряжения во всех элементах схемы для фазы А, например . Аналогичные токи и напряжения в фазе В определяется умножением соответствующих величин фазы А на поворотный множитель , а для фазы С – на множитель , например:

,

.

7. Мощность трехфазной цепи и способы ее измерения

Активная и реактивная мощности трехфазной цепи, как для любой сложной цепи,  равны суммам соответствующих мощностей отдельных фаз:

,

,

где IA, UA, IB, UB, IC, UC – фазные значения токов и напряжений.

В симметричном режиме мощности отдельных фаз равны, а мощность всей цепи может быть получена путем умножения фазных мощностей на число фаз:

,

,

.

В полученных выражениях заменим фазные величины на линейные. Для схемы звезды верны соотношения ;, тогда получим:

.

Для схемы треугольника верны соотношения: Uф=Uл ; Iф=Iл /, тогда получим:

 

Следовательно, независимо от схемы соединения (звезда или треугольник) для симметричной трехфазной цепи формулы для мощностей имеют одинаковый вид:

 [Вт],

 [вар],

 [ВА].

В приведенных формулах для мощностей трехфазной цепи подразумеваются линейные значения величин U и I, но индексы при их обозначениях не ставятся.

Активная мощность в электрической цепи измеряется прибором, называемым ваттметром, показания которого определяется по формуле:

, где Uw, Iw - векторы напряжения и тока, подведенные к обмоткам прибора.

 

Контрольные вопросы и задачи

В чем отличие матриц сопротивлений и проводимостей&ветвей для цепей с отсутствием и наличием индуктивных связей?

В чем заключается особенность нумерации ветвей графа при наличии индуктивных связей?

Какие особенности имеют место при составлении матричных соотношений для цепей, содержащих ветви с идеальными источниками?

В цепи на рис. 5 ; ; ; ; ; . Приняв, что дерево образовано ветвью 1, составить контурные уравнения в матричной форме и определить токи ветвей.

Ответ:

.

Для цепи на рис.5 составить узловые уравнения в матричной форме, на основании которых затем определить токи ветвей.

Ответ:

;

.

В практических расчётах часто нет необходимости знать режимы работы всех элементов сложной цепи, но ставится задача исследовать режимы работы одной определённой ветви.

При расчёте сложной электрической цепи приходится выполнять значительную вычислительную работу даже в том случае, когда требуется определить ток в одной ветви. Объём этой работы в несколько раз увеличивается, если необходимо установить изменение тока, напряжения, мощности при изменении сопротивления данной ветви, так как вычисления нужно производить несколько раз, задаваясь различными значениями сопротивления.


Метод законов Кирхгофа