Резонанс в сложных схемах

Сборник задач по физике
Электрический ток
Волновая оптика
Электромагнетизм
Варианты контрольной работы
Закон Ома для однородного участка
цепи
Правила Кирхгофа
Электромагнитная индукция
Электромагнитные волны
Цепь переменного тока
Кинематика материальной точки
Методика решения задач по кинематике
Магнитное поле в веществе
Классификация магнетиков
Основы электронной теории магнетизма
Парамагнетизм. Закон Кюри
Основы электродинамики
Уравнения Максвелла
Свободные затухающие колебания
Вынужденные электрические колебания
Резонансные явления в
колебательном контуре
Оптика Ньютона
Квантовые свойства света
Интерференция световых волн
Дифракция света
Поляризация света
Тепловое излучение
Измерение силы тока и напряжения
в цепях постоянного тока
Математика
Теория функций
комплексной переменной
Неопределённый, несобственный
и двойной интеграл
Матричный метод решения
систем линейных уравнений
Вычисление объёма тела
Векторная алгебра
Матрицы и определители
Операции над множествами
Действительные числа
Последовательность
Предел функции
Решение задач на вычисление
пределов
Задачи, приводящие
к понятию производной
Производные и дифференциалы
высших порядков
Нахождение пределов с помощью
формулы Тейлора
Комплексные числа.

Определенный интеграл

Действия над матрицами
Обратная матрица
Матричная запись
Прямая на плоскости
Уравнение прямой
Кривые второго порядка
Метод Гаусса
Метод Жордана – Гаусса
примеры пределов
исследование функции
Функции нескольких переменных
производные второго порядка
функции трех переменных
Понятие множества
Операции над множествами
Свойства операций над
множествами
Функции и отображения
Виды отображений
Мощность множеств.
Аксиоматика действительных
чисел
Числовые множества.
Принцип верхней грани.
Предел последовательности
Неограниченная
последовательность
Бесконечно малые
последовательности
Свойства предела
последовательности.
Арифметические операции
Фундаментальные
последовательности
Монотонные
последовательности
Подпоследовательность

Приложение
последовательностей
в экономике

Пример
Предел функции.
Критерий Коши
Непрерывные функции
Дифференциальное исчисление
Производная, интегралы
примеры решений
Исследовать функцию
Вычислить определитель
Методы интегрирования
Произведение матриц
Исследовать систему уравнений
Решить матричным способом
Найти обратную матрицу
Найти предел
последовательности
Рассмотрим задачу о
непрерывном
начислении процентов.
Исследовать на сходимость ряд
Теория поля
Формула интегрирования по
частям
Изменить порядок
интегрирования
Неопределенный интеграл в
экономике
Геометрические приложения
определенного интеграла
Контрольная работа
Вычислить длины дуг кривых
Тройной интеграл
Найти объем тела V
Вычислить работу векторного
поля
Вычисление несобственных
интегралов
экстремум функций двух
переменных
Вычислить производную функции
Метод интегрирования
подстановкой
Рационализация интегралов
Математическая модель
Проблемы при работе
с Adobe Illustrator
Советы при работе
с Adobe Illustrator
Печать в Illustrator
Сборочный чертеж
Параметры  резьбы
Соединение болтом
Соединение шпилькой
Сварные соединения
Общие  сведения о резьбе
Выполнить эскизы с натуры
чертеж сборочной единицы
Эскизирование деталей
Построить три вида детали
Графические работы
Основы электротехники
Задание к курсовой работе
Физические законы в электротехнике
Выбор типа выпрямителя и
трансформатора
Метод узловых и контурных уравнений
Расчёт трёхфазной цепи
Метод законов Кирхгофа
Электрические цепи переменного
синусоидального тока
Переменные ток в однородных
идеальных элементах
двухполюсник
Резонанс в сложных схемах
Топологические методы расчета
Электрические цепи трехфазного тока
Основные законы электрических цепей
Индуктивность
резонанс токов
Магнитные цепи
Определение магнитодвижущей силы
Трёхфазный трансформатор
Асинхронная машина
Выпрямители переменного тока
Однофазная схема выпрямления
Информатика
Парольная защита операционных систем
Криптографические ключи
Технологии программирования
Обработка информации

Технологии баз данных

Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

  На рис. 67 приведена эквивалентная схема параллельного контура, в которой реальные элементы цепи (катушка и конденсатор) представлены последовательными схемами замещения.

Входное комплексное сопротивление схемы:

Условие резонанса:

 или 

Анализ этого уравнения показывает неоднозначную зависимость условия резонанса от значений параметров каждого элемента схемы.

Если сложная схема содержит в своей структуре несколько (более двух) разнородных реактивных элементов, то при изменении частоты в ней могут наблюдаться несколько резонансных режимов (как тока, так и напряжения) в зависимости от структуры схемы.

Магнитносвязанные электрические цепи

1.Общие определения

Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными) (рис. 69а).

2. Последовательное соединение магнитносвязанных катушек

 

 Пусть две магнитносвязанные катушки (R1, L1, R2, L2, M) соединены последовательно с источником ЭДС Е (рис. 70).

 

При последовательном соединении положительное направление тока выбирается одновременно для обеих катушек, поэтому его направление относительно одноименных выводов зависит только от способа соединения катушек между собой: a) согласное (*) и б) встречное ( · ).

 При согласном включении собственные и взаимные магнитные потоки будут складываться, а при встречном — вычитаться. По второму закону Кирхгофа:

-дифференциальная форма,

   - комплексная форма

 

Здесь и далее знак “+” соответствует согласному включению, а знак “-”  - встречному.

Полученное соотношение используется на практике для экспериментального определения взаимного реактивного сопротивления XМ и соответственно взаимной индуктивности M. Для этого в цепи согласно схемы рис. 72  фиксируют показания трех измерительных приборов ( U, I, φ) при согласном (1) и встречном (2) включении катушек и по показаниям приборов определяют эквивалентные параметры цепи:

  Большему значению Xэ соответствует согласное включение, меньшему - встречное.

 

Сложная цепь с магнитносвязанными катушками

 В сложной цепи магнитосвязанные катушки могут находиться в любых ветвях. Так как направления токов в ветвях схемы выбираются  произвольно, то токи в ветвях, содержащих магнитносвязанные катушки, могут быть направлены как согласно, так и встречно.

 Расчет токов в сложной схеме с магнитносвязанными катушками производится, как правило, методом законов Кирхгофа. К расчету таких цепей неприменим метод узловых потенциалов и метод эквивалентного генератора. Учет всех слагаемых в уравнениях метода контурных токов довольно сложен, по этой причине его также не применяют.

Линейный (без сердечника) трансформатор

Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) - нагрузка ZН (рис. 77).

 

Уравнения Кирхгофа для схемы трансформатора в комплексной форме имеют вид:

Исследование режимов электрических цепей методом круговых диаграмм.

Уравнение дуги окружности в комплексной форме.

При изменении параметров одного из элементов сложной цепи токи всех ветвей, напряжения на всех элементах изменяются так, что концы векторов этих величин описывают дуги некоторых окружностей. Для исследования зависимости любой векторной величины (U, I) от переменного параметра достаточно определить дугу окружности, по которой перемещается конец этого вектора, другими словами, построить круговую диаграмму.

Уравнение дуги окружности в комплексной форме имеют вид:

 ,

где М = Мejb – исследуемый вектор, M0 - вектор-хорда дуги окружности, a = const – постоянный коэффициент, y = const – постоянный угол, n = var = (0 - ¥) – переменный параметр.

Порядок построения круговой диаграммы по заданному уравнению:

Круговая диаграмма тока и напряжений для элементов последовательной цепи

Рассмотрим схему цепи, состоящую из последовательно включенных источника ЭДС E и пассивных элементов Z1, и Z2 (рис. 81). Задано, что E = Eeja=const, Z1 = Z1ejj1 = const, Z2 = Z2ejj2, где j2=const, a Z2 = var = 0÷¥ - переменный параметр.

 

Преобразуем уравнение закона Ома для схемы к виду дуги окружности в комплексной форме:

,

где  М0 = Iк= E/Z1 – ток короткого замыкания, соответствует вектору-хорде дуги окружности, Z2 = n = var – переменный параметр, Z1= a = const -  постоянный коэффициент, j2 -j1= y = const – постоянный угол.

Круговая диаграмма для произвольного тока и напряжения в сложной цепи

 Пусть в схеме сложной цепи изменяется параметр сопротивления в к-той ветви Zк=Zкejjк так, что фазный угол jк= const, а модуль Zк=0÷¥ = var – переменный параметр.

Выделим к-тую ветвь из сложной схемы, а остальную часть схемы по отношению к ветви заменим эквивалентным генератором напряжения с параметрами Eэ = Uхх, Z0= Z0ejjo = Zвх (рис 82):

 

Таким образом, получившаяся эквивалентная схема рис. 82 ничем не отличается от рассмотренной ранее схемы рис. 81, и, следовательно, для переменных векторов Iк, Uк по аналогии могут быть могут быть записанные уравнения дуги в комплексной форме

Математика вычисление производной