Резонанс в сложных схемах

Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

  На рис. 67 приведена эквивалентная схема параллельного контура, в которой реальные элементы цепи (катушка и конденсатор) представлены последовательными схемами замещения.

Входное комплексное сопротивление схемы:

Условие резонанса:

 или 

Анализ этого уравнения показывает неоднозначную зависимость условия резонанса от значений параметров каждого элемента схемы.

Если сложная схема содержит в своей структуре несколько (более двух) разнородных реактивных элементов, то при изменении частоты в ней могут наблюдаться несколько резонансных режимов (как тока, так и напряжения) в зависимости от структуры схемы.

Магнитносвязанные электрические цепи

1.Общие определения

Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными) (рис. 69а).

2. Последовательное соединение магнитносвязанных катушек

 

 Пусть две магнитносвязанные катушки (R1, L1, R2, L2, M) соединены последовательно с источником ЭДС Е (рис. 70).

 

При последовательном соединении положительное направление тока выбирается одновременно для обеих катушек, поэтому его направление относительно одноименных выводов зависит только от способа соединения катушек между собой: a) согласное (*) и б) встречное ( · ).

 При согласном включении собственные и взаимные магнитные потоки будут складываться, а при встречном — вычитаться. По второму закону Кирхгофа:

-дифференциальная форма,

   - комплексная форма

 

Здесь и далее знак “+” соответствует согласному включению, а знак “-”  - встречному.

Полученное соотношение используется на практике для экспериментального определения взаимного реактивного сопротивления XМ и соответственно взаимной индуктивности M. Для этого в цепи согласно схемы рис. 72  фиксируют показания трех измерительных приборов ( U, I, φ) при согласном (1) и встречном (2) включении катушек и по показаниям приборов определяют эквивалентные параметры цепи:

  Большему значению Xэ соответствует согласное включение, меньшему - встречное.

 

Сложная цепь с магнитносвязанными катушками

 В сложной цепи магнитосвязанные катушки могут находиться в любых ветвях. Так как направления токов в ветвях схемы выбираются  произвольно, то токи в ветвях, содержащих магнитносвязанные катушки, могут быть направлены как согласно, так и встречно.

 Расчет токов в сложной схеме с магнитносвязанными катушками производится, как правило, методом законов Кирхгофа. К расчету таких цепей неприменим метод узловых потенциалов и метод эквивалентного генератора. Учет всех слагаемых в уравнениях метода контурных токов довольно сложен, по этой причине его также не применяют.

Линейный (без сердечника) трансформатор

Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) - нагрузка ZН (рис. 77).

 

Уравнения Кирхгофа для схемы трансформатора в комплексной форме имеют вид:

Исследование режимов электрических цепей методом круговых диаграмм.

Уравнение дуги окружности в комплексной форме.

При изменении параметров одного из элементов сложной цепи токи всех ветвей, напряжения на всех элементах изменяются так, что концы векторов этих величин описывают дуги некоторых окружностей. Для исследования зависимости любой векторной величины (U, I) от переменного параметра достаточно определить дугу окружности, по которой перемещается конец этого вектора, другими словами, построить круговую диаграмму.

Уравнение дуги окружности в комплексной форме имеют вид:

 ,

где М = Мejb – исследуемый вектор, M0 - вектор-хорда дуги окружности, a = const – постоянный коэффициент, y = const – постоянный угол, n = var = (0 - ¥) – переменный параметр.

Порядок построения круговой диаграммы по заданному уравнению:

Круговая диаграмма тока и напряжений для элементов последовательной цепи

Рассмотрим схему цепи, состоящую из последовательно включенных источника ЭДС E и пассивных элементов Z1, и Z2 (рис. 81). Задано, что E = Eeja=const, Z1 = Z1ejj1 = const, Z2 = Z2ejj2, где j2=const, a Z2 = var = 0÷¥ - переменный параметр.

 

Преобразуем уравнение закона Ома для схемы к виду дуги окружности в комплексной форме:

,

где  М0 = Iк= E/Z1 – ток короткого замыкания, соответствует вектору-хорде дуги окружности, Z2 = n = var – переменный параметр, Z1= a = const -  постоянный коэффициент, j2 -j1= y = const – постоянный угол.

Круговая диаграмма для произвольного тока и напряжения в сложной цепи

 Пусть в схеме сложной цепи изменяется параметр сопротивления в к-той ветви Zк=Zкejjк так, что фазный угол jк= const, а модуль Zк=0÷¥ = var – переменный параметр.

Выделим к-тую ветвь из сложной схемы, а остальную часть схемы по отношению к ветви заменим эквивалентным генератором напряжения с параметрами Eэ = Uхх, Z0= Z0ejjo = Zвх (рис 82):

 

Таким образом, получившаяся эквивалентная схема рис. 82 ничем не отличается от рассмотренной ранее схемы рис. 81, и, следовательно, для переменных векторов Iк, Uк по аналогии могут быть могут быть записанные уравнения дуги в комплексной форме

Безопасный быстрый реактор РБЕЦ Атомная энергетика Математика вычисление производной