Переменные ток в однородных идеальных элементах

Сборник задач по физике
Электрический ток
Волновая оптика
Электромагнетизм
Варианты контрольной работы
Закон Ома для однородного участка
цепи
Правила Кирхгофа
Электромагнитная индукция
Электромагнитные волны
Цепь переменного тока
Кинематика материальной точки
Методика решения задач по кинематике
Магнитное поле в веществе
Классификация магнетиков
Основы электронной теории магнетизма
Парамагнетизм. Закон Кюри
Основы электродинамики
Уравнения Максвелла
Свободные затухающие колебания
Вынужденные электрические колебания
Резонансные явления в
колебательном контуре
Оптика Ньютона
Квантовые свойства света
Интерференция световых волн
Дифракция света
Поляризация света
Тепловое излучение
Измерение силы тока и напряжения
в цепях постоянного тока
Математика
Теория функций
комплексной переменной
Неопределённый, несобственный
и двойной интеграл
Матричный метод решения
систем линейных уравнений
Вычисление объёма тела
Векторная алгебра
Матрицы и определители
Операции над множествами
Действительные числа
Последовательность
Предел функции
Решение задач на вычисление
пределов
Задачи, приводящие
к понятию производной
Производные и дифференциалы
высших порядков
Нахождение пределов с помощью
формулы Тейлора
Комплексные числа.

Определенный интеграл

Действия над матрицами
Обратная матрица
Матричная запись
Прямая на плоскости
Уравнение прямой
Кривые второго порядка
Метод Гаусса
Метод Жордана – Гаусса
примеры пределов
исследование функции
Функции нескольких переменных
производные второго порядка
функции трех переменных
Понятие множества
Операции над множествами
Свойства операций над
множествами
Функции и отображения
Виды отображений
Мощность множеств.
Аксиоматика действительных
чисел
Числовые множества.
Принцип верхней грани.
Предел последовательности
Неограниченная
последовательность
Бесконечно малые
последовательности
Свойства предела
последовательности.
Арифметические операции
Фундаментальные
последовательности
Монотонные
последовательности
Подпоследовательность

Приложение
последовательностей
в экономике

Пример
Предел функции.
Критерий Коши
Непрерывные функции
Дифференциальное исчисление
Производная, интегралы
примеры решений
Исследовать функцию
Вычислить определитель
Методы интегрирования
Произведение матриц
Исследовать систему уравнений
Решить матричным способом
Найти обратную матрицу
Найти предел
последовательности
Рассмотрим задачу о
непрерывном
начислении процентов.
Исследовать на сходимость ряд
Теория поля
Формула интегрирования по
частям
Изменить порядок
интегрирования
Неопределенный интеграл в
экономике
Геометрические приложения
определенного интеграла
Контрольная работа
Вычислить длины дуг кривых
Тройной интеграл
Найти объем тела V
Вычислить работу векторного
поля
Вычисление несобственных
интегралов
экстремум функций двух
переменных
Вычислить производную функции
Метод интегрирования
подстановкой
Рационализация интегралов
Математическая модель
Проблемы при работе
с Adobe Illustrator
Советы при работе
с Adobe Illustrator
Печать в Illustrator
Сборочный чертеж
Параметры  резьбы
Соединение болтом
Соединение шпилькой
Сварные соединения
Общие  сведения о резьбе
Выполнить эскизы с натуры
чертеж сборочной единицы
Эскизирование деталей
Построить три вида детали
Графические работы
Основы электротехники
Задание к курсовой работе
Физические законы в электротехнике
Выбор типа выпрямителя и
трансформатора
Метод узловых и контурных уравнений
Расчёт трёхфазной цепи
Метод законов Кирхгофа
Электрические цепи переменного
синусоидального тока
Переменные ток в однородных
идеальных элементах
двухполюсник
Резонанс в сложных схемах
Топологические методы расчета
Электрические цепи трехфазного тока
Основные законы электрических цепей
Индуктивность
резонанс токов
Магнитные цепи
Определение магнитодвижущей силы
Трёхфазный трансформатор
Асинхронная машина
Выпрямители переменного тока
Однофазная схема выпрямления
Информатика
Парольная защита операционных систем
Криптографические ключи
Технологии программирования
Обработка информации

Технологии баз данных

Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.

а) Цепь с идеальным резистором R.

Пусть к цепи с резистором R (рис. 41а) приложено переменное напряжение:

Цепь с идеальной катушкой L Примеры решения типовых задач по ТОЭ Основы электротехники выполнение курсовой

Пусть к цепи с идеальной катушкой L (рис. 43а) приложено переменное напряжение:

Ток и напряжение на зажимах катушки связаны между собой физическим законом электромагнитной индукции , откуда следует:

,

  где  - индуктивное реактивное сопротивление катушки,

Уравнения закона Ома для амплитудных и действующих значений функций:

Угол сдвига фаз , т.е. в цепи с катушкой L ток отстает от напряжения (напряжение опережает ток) на угол .

Комплексное сопротивление катушки является чисто мнимым и положительн

Электрическая цепь с последовательным соединением элементов R, L и C

 

 

 

Пусть в заданной схеме с последовательным соединением элементов R, L и C (рис. 47) протекает переменный ток

.

По 2-му закону Кирхгофа для мгновенных значений функций получим уравнение в дифференциальной форме:

.

То же уравнение в комплексной форме получит вид:

Электрическая цепь с параллельным соединением элементов R, L и С

 

 

Пусть на входе схемы рис. 49 действует переменное напряжение:

По 1-му закону Кирхгофа для мгновенных значений функций получаем уравнение в дифференциальной форме:

То же уравнение в комплексной форме получит вид:

,

где  - комплексная проводимость,  - активная проводимость,  - реактивная индуктивная проводимость,  - реактивная емкостная проводимость,  - реактивная (эквивалентная) проводимость,  - модуль комплексной проводимости или полная проводимость,  - аргумент комплексной проводимости или угол сдвига фаз между напряжением и током на входе схемы. При  и φ>0 – цепь в целом носит активно-индуктивный характер, а при  и φ<0 – цепь в целом носит активно-емкостный характер.

Уравнение закона Ома для параллельной схемы будет иметь вид:

Активные и реактивные составляющие токов и напряжений

При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.

Пусть некоторый приемник энергии носит в целом активно-индуктивный характер (например, электродвигатель). Такой приемник может быть представлен двумя простейшими схемами замещения, состоящими из 2-х схемных элементов R и L: а) последовательной (рис. 51а) и б) параллельной (рис. 51б):

 

Обе схемы будут эквивалентны друг другу при условии равенства параметров режима на входе: , .

Для последовательной схемы (рис. 51а) справедливы соотношения:

Последовательной схеме замещения соответствует представление вектора напряжения в виде суммы двух составляющих: активной составляющей Uа, совпадающей с вектором тока I, и реактивной составляющей Uр, перпендикулярной к вектору тока (рис. 52а):

 

Из геометрии рис. 52а следуют соотношения: . Треугольник, составленный из векторов , ,  получил название треугольника напряжений.

Если стороны треугольника напряжений разделить на ток I, то получится новый треугольник, подобный исходному, но сторонами которого являются полное сопротивление Z, активное сопротивление R и реактивное сопротивление X. Треугольник со сторонами Z, R, X  называется треугольником сопротивлений (рис. 52б). Из треугольника сопротивлений следуют соотношения: R=Z×cosφ, X=Z×sinφ, , .

Параллельной схеме замещения соответствует представление вектора тока в виде суммы двух составляющих: активной составляющей Iа, совпадающей с вектором напряжения U, и реактивной составляющей Iр, перпендикулярной к вектору U (рис. 53а):

Математика вычисление производной