Электрические цепи переменного синусоидального тока

Сборник задач по физике
Электрический ток
Волновая оптика
Электромагнетизм
Варианты контрольной работы
Закон Ома для однородного участка
цепи
Правила Кирхгофа
Электромагнитная индукция
Электромагнитные волны
Цепь переменного тока
Кинематика материальной точки
Методика решения задач по кинематике
Магнитное поле в веществе
Классификация магнетиков
Основы электронной теории магнетизма
Парамагнетизм. Закон Кюри
Основы электродинамики
Уравнения Максвелла
Свободные затухающие колебания
Вынужденные электрические колебания
Резонансные явления в
колебательном контуре
Оптика Ньютона
Квантовые свойства света
Интерференция световых волн
Дифракция света
Поляризация света
Тепловое излучение
Измерение силы тока и напряжения
в цепях постоянного тока
Математика
Теория функций
комплексной переменной
Неопределённый, несобственный
и двойной интеграл
Матричный метод решения
систем линейных уравнений
Вычисление объёма тела
Векторная алгебра
Матрицы и определители
Операции над множествами
Действительные числа
Последовательность
Предел функции
Решение задач на вычисление
пределов
Задачи, приводящие
к понятию производной
Производные и дифференциалы
высших порядков
Нахождение пределов с помощью
формулы Тейлора
Комплексные числа.

Определенный интеграл

Действия над матрицами
Обратная матрица
Матричная запись
Прямая на плоскости
Уравнение прямой
Кривые второго порядка
Метод Гаусса
Метод Жордана – Гаусса
примеры пределов
исследование функции
Функции нескольких переменных
производные второго порядка
функции трех переменных
Понятие множества
Операции над множествами
Свойства операций над
множествами
Функции и отображения
Виды отображений
Мощность множеств.
Аксиоматика действительных
чисел
Числовые множества.
Принцип верхней грани.
Предел последовательности
Неограниченная
последовательность
Бесконечно малые
последовательности
Свойства предела
последовательности.
Арифметические операции
Фундаментальные
последовательности
Монотонные
последовательности
Подпоследовательность

Приложение
последовательностей
в экономике

Пример
Предел функции.
Критерий Коши
Непрерывные функции
Дифференциальное исчисление
Производная, интегралы
примеры решений
Исследовать функцию
Вычислить определитель
Методы интегрирования
Произведение матриц
Исследовать систему уравнений
Решить матричным способом
Найти обратную матрицу
Найти предел
последовательности
Рассмотрим задачу о
непрерывном
начислении процентов.
Исследовать на сходимость ряд
Теория поля
Формула интегрирования по
частям
Изменить порядок
интегрирования
Неопределенный интеграл в
экономике
Геометрические приложения
определенного интеграла
Контрольная работа
Вычислить длины дуг кривых
Тройной интеграл
Найти объем тела V
Вычислить работу векторного
поля
Вычисление несобственных
интегралов
экстремум функций двух
переменных
Вычислить производную функции
Метод интегрирования
подстановкой
Рационализация интегралов
Математическая модель
Проблемы при работе
с Adobe Illustrator
Советы при работе
с Adobe Illustrator
Печать в Illustrator
Сборочный чертеж
Параметры  резьбы
Соединение болтом
Соединение шпилькой
Сварные соединения
Общие  сведения о резьбе
Выполнить эскизы с натуры
чертеж сборочной единицы
Эскизирование деталей
Построить три вида детали
Графические работы
Основы электротехники
Задание к курсовой работе
Физические законы в электротехнике
Выбор типа выпрямителя и
трансформатора
Метод узловых и контурных уравнений
Расчёт трёхфазной цепи
Метод законов Кирхгофа
Электрические цепи переменного
синусоидального тока
Переменные ток в однородных
идеальных элементах
двухполюсник
Резонанс в сложных схемах
Топологические методы расчета
Электрические цепи трехфазного тока
Основные законы электрических цепей
Индуктивность
резонанс токов
Магнитные цепи
Определение магнитодвижущей силы
Трёхфазный трансформатор
Асинхронная машина
Выпрямители переменного тока
Однофазная схема выпрямления
Информатика
Парольная защита операционных систем
Криптографические ключи
Технологии программирования
Обработка информации

Технологии баз данных

Переменный ток (напряжение) и характеризующие его величины

Переменным называется ток i(t) [напряжение u(t)], периодически изменяющийся во времени по произвольному закону. В электроэнергетике понятие ’’переменный’’ употребляют в более узком смысле, а именно: под переменным понимают ток (напряжение), изменяющийся во времени по синусоидальному закону:

i(t)=Im sin(wt+yi),

u(t)=Umsin(wt+yu)

Графические диаграммы этих функций имеют вид рис. 32:

Таким образом, в цепи переменного тока любой сложности напряжения и токи на всех участках будут изменяться по синусоидальному закону при условии, что источники энергии обеспечивают синусоидальную форму напряжений на их выводах.

Диапазон частот токов и напряжений, применяемых в различных отраслях современной техники, очень велик: от 10-1 Гц до 109 Гц. В электроэнергетике в качестве стандарта частоты в Европе принята частота f=50 Гц (w=2pf = 314 c-1), а в США и Канаде f = 60 Гц (w = 377 с-1), в других странах возможны оба варианта или один из них.

 Частота f = 50 Гц принята в качестве стандарта исторически на заре развития электроэнергетики и уже не соответствует сегодняшнему уровню развития техники. Оптимальной на сегодня была бы частота в диапазоне 150 – 200 Гц. Однако переход на оптимальную частоту связан с большими техническими сложностями и в ближайшее время не может быть осуществлен.

Среднее и действующее значения переменного тока и напряжения

Среднее значение Fср произвольной функции времени f(t) за интервал времени Т определяется по формуле :

Численно среднее значение Fср равно высоте прямоугольника, равновеликого по площади фигуре, ограниченной кривой f(t), осью t и пределами интегрирования 0 – Т (рис. 33).

Для синусоидальной функции среднее значение за полный период Т (или за целое число полных периодов) равно нулю, так как площади положительной и отрицательной полуволн этой функции равны. Для переменного синусоидального тока (напряжения) среднее значение определяют за половину периода (Т/2) между двумя нулевыми значениями (рис. 34) :

Векторные диаграммы переменных токов и напряжений

Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :

  а) длина вектора в масштабе равна амплитуде функции Im ;

 б) начальное положение вектора при t = 0 определяется начальной фазой a ;

 в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.

Теоретические основы комплексного метода расчета цепей переменного тока

Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической:

В основе перехода от одной формы комплексного числа к другой лежит известная из математики формула Эйлера : 

Здесь обозначены:

j =   – мнимое единичное число,

Z – модуль комплексного числа,

a - аргумент комплексного числа,

а – вещественная часть комплексного числа,

jb – мнимая часть комплексного числа.

Можно утверждать, что каждой точке (вектору) на комплексной плоскости соответствует пределенное комплексное число, и наоборот, каждому комплексному числу соответствует определенная точка (вектор) на комплексной плоскости.

Известно, что синусоидальную функцию можно изобразить вектором, а вектор в свою очередь можно представить комплексным числом. Таким образом, синусоидальные токи и напряжения, характеризующие установившийся режим цепи переменного тока, могут быть представлены комплексными числами :

 Û - комплексная амплитуда,

 

 Û - комплексное действующее значение. Здесь Û -знак соответствия.

При расчете цепей переменного тока возникает необходимость выполнения различного рода математических операций с синусоидальными функциями. При замене синусоидальных функций (оригиналов) комплексными числами (изображениями) соответствующие математические операции выполняются с комплексными числами.

Замена математических операций 2-го рода (дифференцирование, интегрирование) операциями 1-го рода (умножение, деление) существенно упрощает расчет цепей переменного тока в комплексной форме.

Современные инженерные калькуляторы в режиме «compl» позволяют выполнять все действия с комплексными числами непосредственно так же, как с обычными числами. При этом следует принять во внимание, что калькулятор выполняет действия над комплексными числами только в алгебраической форме  и результаты расчета выдает также в алгебраической форме. Если исходные комплексные числа заданы в показательной форме , то после их ввода необходимо выполнить операцию преобразования их в алгебраическую форму.

Комплексный метод расчета цепей переменного тока был разработан в 1910-1912гг. американским инженером Штейнметцом и сыграл большую роль в развитии теории электрических цепей переменного тока.

Количество энергии, которое преобразуется в приемнике в другие виды в единицу времени, называется активной мощностью P. Математически активная мощность может быть получена как среднее значение мгновенной мощности за период:

Реактивная мощность Q характеризует интенсивность обмена энергией между магнитным полем приемника и источником и определяется по формуле:

Реактивная мощность индуктивного характера  положительна, а емкостного характера   отрицательна. Противоположность знаков указывает на тот факт, что колебания энергии в разнородных элементах совершаются в противофазе.

Математика вычисление производной