Электрические цепи переменного синусоидального тока

Переменный ток (напряжение) и характеризующие его величины

Переменным называется ток i(t) [напряжение u(t)], периодически изменяющийся во времени по произвольному закону. В электроэнергетике понятие ’’переменный’’ употребляют в более узком смысле, а именно: под переменным понимают ток (напряжение), изменяющийся во времени по синусоидальному закону:

i(t)=Im sin(wt+yi),

u(t)=Umsin(wt+yu)

Графические диаграммы этих функций имеют вид рис. 32:

Таким образом, в цепи переменного тока любой сложности напряжения и токи на всех участках будут изменяться по синусоидальному закону при условии, что источники энергии обеспечивают синусоидальную форму напряжений на их выводах.

Диапазон частот токов и напряжений, применяемых в различных отраслях современной техники, очень велик: от 10-1 Гц до 109 Гц. В электроэнергетике в качестве стандарта частоты в Европе принята частота f=50 Гц (w=2pf = 314 c-1), а в США и Канаде f = 60 Гц (w = 377 с-1), в других странах возможны оба варианта или один из них.

 Частота f = 50 Гц принята в качестве стандарта исторически на заре развития электроэнергетики и уже не соответствует сегодняшнему уровню развития техники. Оптимальной на сегодня была бы частота в диапазоне 150 – 200 Гц. Однако переход на оптимальную частоту связан с большими техническими сложностями и в ближайшее время не может быть осуществлен.

Среднее и действующее значения переменного тока и напряжения

Среднее значение Fср произвольной функции времени f(t) за интервал времени Т определяется по формуле :

Численно среднее значение Fср равно высоте прямоугольника, равновеликого по площади фигуре, ограниченной кривой f(t), осью t и пределами интегрирования 0 – Т (рис. 33).

Для синусоидальной функции среднее значение за полный период Т (или за целое число полных периодов) равно нулю, так как площади положительной и отрицательной полуволн этой функции равны. Для переменного синусоидального тока (напряжения) среднее значение определяют за половину периода (Т/2) между двумя нулевыми значениями (рис. 34) :

Векторные диаграммы переменных токов и напряжений

Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :

  а) длина вектора в масштабе равна амплитуде функции Im ;

 б) начальное положение вектора при t = 0 определяется начальной фазой a ;

 в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.

Теоретические основы комплексного метода расчета цепей переменного тока

Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической:

В основе перехода от одной формы комплексного числа к другой лежит известная из математики формула Эйлера : 

Здесь обозначены:

j =   – мнимое единичное число,

Z – модуль комплексного числа,

a - аргумент комплексного числа,

а – вещественная часть комплексного числа,

jb – мнимая часть комплексного числа.

Можно утверждать, что каждой точке (вектору) на комплексной плоскости соответствует пределенное комплексное число, и наоборот, каждому комплексному числу соответствует определенная точка (вектор) на комплексной плоскости.

Известно, что синусоидальную функцию можно изобразить вектором, а вектор в свою очередь можно представить комплексным числом. Таким образом, синусоидальные токи и напряжения, характеризующие установившийся режим цепи переменного тока, могут быть представлены комплексными числами :

 Û - комплексная амплитуда,

 

 Û - комплексное действующее значение. Здесь Û -знак соответствия.

При расчете цепей переменного тока возникает необходимость выполнения различного рода математических операций с синусоидальными функциями. При замене синусоидальных функций (оригиналов) комплексными числами (изображениями) соответствующие математические операции выполняются с комплексными числами.

Замена математических операций 2-го рода (дифференцирование, интегрирование) операциями 1-го рода (умножение, деление) существенно упрощает расчет цепей переменного тока в комплексной форме.

Современные инженерные калькуляторы в режиме «compl» позволяют выполнять все действия с комплексными числами непосредственно так же, как с обычными числами. При этом следует принять во внимание, что калькулятор выполняет действия над комплексными числами только в алгебраической форме  и результаты расчета выдает также в алгебраической форме. Если исходные комплексные числа заданы в показательной форме , то после их ввода необходимо выполнить операцию преобразования их в алгебраическую форму.

Комплексный метод расчета цепей переменного тока был разработан в 1910-1912гг. американским инженером Штейнметцом и сыграл большую роль в развитии теории электрических цепей переменного тока.

Количество энергии, которое преобразуется в приемнике в другие виды в единицу времени, называется активной мощностью P. Математически активная мощность может быть получена как среднее значение мгновенной мощности за период:

Реактивная мощность Q характеризует интенсивность обмена энергией между магнитным полем приемника и источником и определяется по формуле:

Реактивная мощность индуктивного характера  положительна, а емкостного характера   отрицательна. Противоположность знаков указывает на тот факт, что колебания энергии в разнородных элементах совершаются в противофазе.

Курс лекций по строительной механике http://krmatem.ru/ Математика вычисление производной