Расчёт трёхфазной цепи при соединении приемника в звезду

Сборник задач по физике
Электрический ток
Волновая оптика
Электромагнетизм
Варианты контрольной работы
Закон Ома для однородного участка
цепи
Правила Кирхгофа
Электромагнитная индукция
Электромагнитные волны
Цепь переменного тока
Кинематика материальной точки
Методика решения задач по кинематике
Магнитное поле в веществе
Классификация магнетиков
Основы электронной теории магнетизма
Парамагнетизм. Закон Кюри
Основы электродинамики
Уравнения Максвелла
Свободные затухающие колебания
Вынужденные электрические колебания
Резонансные явления в
колебательном контуре
Оптика Ньютона
Квантовые свойства света
Интерференция световых волн
Дифракция света
Поляризация света
Тепловое излучение
Измерение силы тока и напряжения
в цепях постоянного тока
Математика
Теория функций
комплексной переменной
Неопределённый, несобственный
и двойной интеграл
Матричный метод решения
систем линейных уравнений
Вычисление объёма тела
Векторная алгебра
Матрицы и определители
Операции над множествами
Действительные числа
Последовательность
Предел функции
Решение задач на вычисление
пределов
Задачи, приводящие
к понятию производной
Производные и дифференциалы
высших порядков
Нахождение пределов с помощью
формулы Тейлора
Комплексные числа.

Определенный интеграл

Действия над матрицами
Обратная матрица
Матричная запись
Прямая на плоскости
Уравнение прямой
Кривые второго порядка
Метод Гаусса
Метод Жордана – Гаусса
примеры пределов
исследование функции
Функции нескольких переменных
производные второго порядка
функции трех переменных
Понятие множества
Операции над множествами
Свойства операций над
множествами
Функции и отображения
Виды отображений
Мощность множеств.
Аксиоматика действительных
чисел
Числовые множества.
Принцип верхней грани.
Предел последовательности
Неограниченная
последовательность
Бесконечно малые
последовательности
Свойства предела
последовательности.
Арифметические операции
Фундаментальные
последовательности
Монотонные
последовательности
Подпоследовательность

Приложение
последовательностей
в экономике

Пример
Предел функции.
Критерий Коши
Непрерывные функции
Дифференциальное исчисление
Производная, интегралы
примеры решений
Исследовать функцию
Вычислить определитель
Методы интегрирования
Произведение матриц
Исследовать систему уравнений
Решить матричным способом
Найти обратную матрицу
Найти предел
последовательности
Рассмотрим задачу о
непрерывном
начислении процентов.
Исследовать на сходимость ряд
Теория поля
Формула интегрирования по
частям
Изменить порядок
интегрирования
Неопределенный интеграл в
экономике
Геометрические приложения
определенного интеграла
Контрольная работа
Вычислить длины дуг кривых
Тройной интеграл
Найти объем тела V
Вычислить работу векторного
поля
Вычисление несобственных
интегралов
экстремум функций двух
переменных
Вычислить производную функции
Метод интегрирования
подстановкой
Рационализация интегралов
Математическая модель
Проблемы при работе
с Adobe Illustrator
Советы при работе
с Adobe Illustrator
Печать в Illustrator
Сборочный чертеж
Параметры  резьбы
Соединение болтом
Соединение шпилькой
Сварные соединения
Общие  сведения о резьбе
Выполнить эскизы с натуры
чертеж сборочной единицы
Эскизирование деталей
Построить три вида детали
Графические работы
Основы электротехники
Задание к курсовой работе
Физические законы в электротехнике
Выбор типа выпрямителя и
трансформатора
Метод узловых и контурных уравнений
Расчёт трёхфазной цепи
Метод законов Кирхгофа
Электрические цепи переменного
синусоидального тока
Переменные ток в однородных
идеальных элементах
двухполюсник
Резонанс в сложных схемах
Топологические методы расчета
Электрические цепи трехфазного тока
Основные законы электрических цепей
Индуктивность
резонанс токов
Магнитные цепи
Определение магнитодвижущей силы
Трёхфазный трансформатор
Асинхронная машина
Выпрямители переменного тока
Однофазная схема выпрямления
Информатика
Парольная защита операционных систем
Криптографические ключи
Технологии программирования
Обработка информации

Технологии баз данных

Расчёт трёхфазной цепи при соединении приемника в звезду

При расчёте несимметричной трехфазной цепи с потребителем, соединённым в звезду, схема может быть без нулевого провода или с нулевым проводом, который имеет комплексное сопротивление ZN. В обоих случаях система линейных и фазных напряжений генератора симметричны. Система линейных напряжений нагрузки останется также симметричной, так как линейные провода не обладают сопротивлением. Но система фазных напряжений нагрузки несимметрична из-за наличия напряжения смещения нейтрали UN. Трехфазная цепь при соединении приёмника в звезду представляет собой цепь с двумя узлами, расчёт подобных цепей наиболее целесообразно вести методом узлового напряжения.

Расчёт трёхфазной цепи при соединении приёмника в звезду без нулевого провода.

Если задана трехфазная цепь без нулевого провода, то формула для определения напряжения смещения нейтрали не должна включать проводимость нулевого провода:

  UN =

 Далее фазные напряжения и токи нагрузки определяются аналогично предыдущему примеру, затем делается проверка:

 IA + IB + IC = 0

Расчёт трёхфазной цепи при соединении приёмника в треугольник

  Рассмотрим теперь задачу о прохождении случайного процесса через нелинейную систему. В общем случае эта задача весьма сложная, но она значительно упрощается, когда нелинейная система является безынерционной. В безынерционных нелинейных системах значения выходного процесса  в данный момент времени определяются значениями входного процесса  в тот же самый момент времени. Для нелинейных безынерционных преобразований более простой задачей является определение функций распределения на выходе в гораздо более сложной – определение корреляционной функции или энергетического спектра.

Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами

 Составляем схему заданной цепи, подключая последовательно соединённые приёмники к источнику напряжения

u = 220 Sin (ωt + 150) + 80 Sin (3ωt – 250) + 30 Sin 5ωt = u1 + u3 + u5,

который на схеме замещения представляем как последовательно соединённые три источника переменного напряжения u1, u2 и u3 с разными частотами (рисунок 6.1) Величины сопротивлений заданы для частоты первой гармоники: R1 = 2 Ом, XC11 = 3 Ом, R2 = 14 Ом, XC21 = 12 Ом, XL31 = 18 Ом. Поскольку напряжения источников имеют разные частоты, то и реактивные сопротивления для них будут иметь разные величины. Активные сопротивления считаем от частоты не зависящими. Поэтому расчёт ведём методом наложения, то есть отдельно для каждой гармоники.

Переходные процессы и основы синтеза линейных радиотехнических цепей

Переходные процессы в линейных цепях

Современные радиотехнические системы часто включают в себя комплекс достаточно сложных электрических цепей, среди которых разнообразные линейные цепи.

В зависимости от характера воздействующих э.д.с. и назначения линейных цепей в них могут протекать самые различные процессы. Поэтому необходимо иметь ясное представление о таких процессах и уметь рассчитывать их для определенной цепи при заданном воздействии. Это относится к задачам анализа процессов в цепях. Среди них все больший интерес вызывают задачи, связанные с процессами в различных импульсных системах.

В этих задачах кроме анализа установившихся или стационарных процессов важное значение имеет анализ переходных процессов, возникающих при включении или выключении э.д.с. и при воздействии импульсных сигналов.

Анализ переходных процессов методом решения линейных дифференциальных уравнений

Метод решения линейных дифференциальных уравнений, или так называемый классический метод, основан на отыскании решения вида (0.2) для уравнения (0.l).

Так, при подключении э.д.с, e(t) к последовательно соединенным индуктивности L , емкости С и активному сопротивлению R, на основании второго закона Кирхгофа получаем уравнение

которое приводится к линейному дифференциальному уравнению второго порядка

Включение цепи R, C на постоянное напряжение

 

 

Пусть в момент t=0 цепь, состоящая из последовательно соединенных активного сопротивления R и не заряженной емкости C, подключается к источнику постоянного напряжения E (рис.1.1). Наличие переходного процесса в данной цепи связано с тем, что при весьма кратковременном ("мгновенном") изменении внешнего воздействия энергия поля конденсатора не может измениться мгновенно. Действительно, при скачкообразном изменении запаса энергии в цепи мощность, потребляемая цепью, принимала бы бесконечно большое значение, что не имеет физического смысла. Энергия электрического поля емкости

Постоянная A определяется из начальных условий для данной цепи, заключающихся в том, что при t=0, = 0, так как в момент включения цепи напряжение на конденсаторе скачком измениться не может в силу непрерывного характера изменения энергии электрического поля конденсатора. Таким образом, при t=0 из (l.6) имеем 0=A+E т.е. A=-E и

Напряжение на конденсаторе в процессе его заряда возрастает no экспоненциальному закону, приближаясь к величине E тем быстрее, чем меньше постоянная времени цепи . Теоретически  при . Однако на практики вводят понятие времени установления стационарного процесса , определяемое из условия, что за это время напряжение на емкости достигает величины 0,95 E, т.е.

Разряд конденсатора на активное сопротивление

Если конденсатор , предварительно заряженный до напряжения  замкнуть в момент  на сопротивление  (рис.1.3), то будет происходить его разряд. В данном случае внешнего воздействия нет и следует рассматривать лишь свободный процесс в цепи, т.е. уравнение (l.4) будет

,

решением которого является выражение

.

Для определения константы интегрирования  воспользуемся начальным условием задачи: при  .Поэтому  и тогда решение принимает вид

Включение цепи R, L на постоянное напряжение

Рассматриваемая цепь приведена на рис.1.5.Так как энергия магнитного поля катушки индуктивности равна

,

и она не может изменяться скачком при мгновенном изменении внешнего воздействия, то отсюда заключаем, что в цепи R, L ток скачком изменяться не может. Требуется конечное время переходного процесса, пока ток в цепи не достигнет стационарного значения. Рассмотрим этот процесс. Уравнение Кирхгофа для такой цепи

Разряд конденсатора в цепи .

 

 

Пусть предварительно заряженный до напряжения  конденсатор емкостью  в исходный момент времени замыкается на последовательно соединенные активное сопротивление и катушку индуктивности  (рис.1.7). Рассматриваемая цепь содержит, в отличие от предыдущих примеров, два энергоемких параметра - емкость и индуктивность. Поэтому составленное на основании второго закона Кирхгофа уравнение приводится к дифференциальному уравнению второго порядка.

Действительно, имеем для суммы напряжений на элементах цепи

,  (1.15)

или, так как

,

уравнение приводится к виду

Согласно выражению (l.21) на рис.1.8 построен график тока , а также приведен график напряжения на емкости . В рассматриваемом случае характер процесса в цепи носит название апериодического разряда конденсатора. Граничным случаем апериодического процесса является случай, когда . T.e. . Величина тока для этого случая находится, если раскрыть неопределенность, получающуюся в выражении (1.19). Закон изменения тока во времени здесь таков:

.

Как видно из рис.1.8, при апериодическом разряде емкости ток в цепи вначале равен нулю, что объясняется противодействием э.д.с,  самоиндукции катушки. Затем по мере убывания этой э.д.с. ток по абсолютной величине растет. Однако в процессе разряда емкости напряжение  убывает, и ток с некоторого момента также начинает убывать.

Воздействие постоянного напряжения на L,C,R цепь

Пусть постоянное напряжение  подключается в момент  к последовательному  контуру (рис.1.11).Уравнение Кирхгофа для рассматриваемой цепи имеет вид

 

,  (1.27)

и его общее решение , где  - вынужденный ток, в данном случае равный нулю, так как переходный процесс заканчивается, как только конденсатор зарядится до напряжения , а ток заряда прекратится. Ток - свободный ток, являющийся решением однородного уравнения

,

Воздействие гармонической э.д.с, на колебательный контур

В начальный момент  к последовательному  контуру подключается гармоническая э.д.с. Дифференциальное уравнение для данной цепи, составленное на основании уравнения Кирхгофа, имеет вид:

, (1.35)

а его решение . Здесь  - ток свободных колебаний, а  - вынужденный ток.

Аналогичное уравнение записывается для напряжения на емкости

, (1.36)

решение которого .Здесь  - напряжение на емкости, соответствующее свободным колебаниям в контуре. Выражение для этого напряжения можно записать, пользуясь полученным ранее выражением (l.23) при рассмотрении свободных колебаний в контуре. Запишем выражение для напряжения  в виде

.

Величина амплитуды установившегося колебания зависит от добротности контура. Процесс установления колебаний заключается в постепенном заряде емкости и накоплении энергии в ней. Так как частота э.д.с.  и собственная частота контура   равны, то при смене знака э.д.с. ток в контуре также меняет направление, что приводит к увеличению заряда на емкости. Напряжение на емкости растет до того момента времени, пока энергия потерь в активном сопротивлении , возрастая с ростом тока в контуре, не сравняется с энергией, поступающей в контур за счет источника э.д.с.

Процесс установления колебаний практически считается законченным, когда амплитуда напряжения на емкости (или ток в контуре) достигает 95% своего стационарного значения, т.е. можно записать

,

или время установления

Математика вычисление производной