Задания на курсовую работупо ТОЭ

Сборник задач по физике
Электрический ток
Волновая оптика
Электромагнетизм
Варианты контрольной работы
Закон Ома для однородного участка
цепи
Правила Кирхгофа
Электромагнитная индукция
Электромагнитные волны
Цепь переменного тока
Кинематика материальной точки
Методика решения задач по кинематике
Магнитное поле в веществе
Классификация магнетиков
Основы электронной теории магнетизма
Парамагнетизм. Закон Кюри
Основы электродинамики
Уравнения Максвелла
Свободные затухающие колебания
Вынужденные электрические колебания
Резонансные явления в
колебательном контуре
Оптика Ньютона
Квантовые свойства света
Интерференция световых волн
Дифракция света
Поляризация света
Тепловое излучение
Измерение силы тока и напряжения
в цепях постоянного тока
Математика
Теория функций
комплексной переменной
Неопределённый, несобственный
и двойной интеграл
Матричный метод решения
систем линейных уравнений
Вычисление объёма тела
Векторная алгебра
Матрицы и определители
Операции над множествами
Действительные числа
Последовательность
Предел функции
Решение задач на вычисление
пределов
Задачи, приводящие
к понятию производной
Производные и дифференциалы
высших порядков
Нахождение пределов с помощью
формулы Тейлора
Комплексные числа.

Определенный интеграл

Действия над матрицами
Обратная матрица
Матричная запись
Прямая на плоскости
Уравнение прямой
Кривые второго порядка
Метод Гаусса
Метод Жордана – Гаусса
примеры пределов
исследование функции
Функции нескольких переменных
производные второго порядка
функции трех переменных
Понятие множества
Операции над множествами
Свойства операций над
множествами
Функции и отображения
Виды отображений
Мощность множеств.
Аксиоматика действительных
чисел
Числовые множества.
Принцип верхней грани.
Предел последовательности
Неограниченная
последовательность
Бесконечно малые
последовательности
Свойства предела
последовательности.
Арифметические операции
Фундаментальные
последовательности
Монотонные
последовательности
Подпоследовательность

Приложение
последовательностей
в экономике

Пример
Предел функции.
Критерий Коши
Непрерывные функции
Дифференциальное исчисление
Производная, интегралы
примеры решений
Исследовать функцию
Вычислить определитель
Методы интегрирования
Произведение матриц
Исследовать систему уравнений
Решить матричным способом
Найти обратную матрицу
Найти предел
последовательности
Рассмотрим задачу о
непрерывном
начислении процентов.
Исследовать на сходимость ряд
Теория поля
Формула интегрирования по
частям
Изменить порядок
интегрирования
Неопределенный интеграл в
экономике
Геометрические приложения
определенного интеграла
Контрольная работа
Вычислить длины дуг кривых
Тройной интеграл
Найти объем тела V
Вычислить работу векторного
поля
Вычисление несобственных
интегралов
экстремум функций двух
переменных
Вычислить производную функции
Метод интегрирования
подстановкой
Рационализация интегралов
Математическая модель
Проблемы при работе
с Adobe Illustrator
Советы при работе
с Adobe Illustrator
Печать в Illustrator
Сборочный чертеж
Параметры  резьбы
Соединение болтом
Соединение шпилькой
Сварные соединения
Общие  сведения о резьбе
Выполнить эскизы с натуры
чертеж сборочной единицы
Эскизирование деталей
Построить три вида детали
Графические работы
Основы электротехники
Задание к курсовой работе
Физические законы в электротехнике
Выбор типа выпрямителя и
трансформатора
Метод узловых и контурных уравнений
Расчёт трёхфазной цепи
Метод законов Кирхгофа
Электрические цепи переменного
синусоидального тока
Переменные ток в однородных
идеальных элементах
двухполюсник
Резонанс в сложных схемах
Топологические методы расчета
Электрические цепи трехфазного тока
Основные законы электрических цепей
Индуктивность
резонанс токов
Магнитные цепи
Определение магнитодвижущей силы
Трёхфазный трансформатор
Асинхронная машина
Выпрямители переменного тока
Однофазная схема выпрямления
Информатика
Парольная защита операционных систем
Криптографические ключи
Технологии программирования
Обработка информации

Технологии баз данных

Заданы три приёмника электрической энергии со следующими параметрами: Z 1 = …Ом, Z 2 = …Ом, Z 3 =… Ом. Рассчитать режимы работы электроприёмников при следующих схемах включения:

1. Присоединить приёмники последовательно к источнику с напряжением U =… В. Определить полное сопротивление цепи Z, ток I, напряжения на участках, угол сдвига фаз, мощности участков и всей цепи, индуктивности и ёмкости участков. Построить топографическую векторную диаграмму цепи.

 2. Присоединить приёмники параллельно к источнику с напряжениемU =… В. Определить токи в ветвях и в неразветвленной части цепи, углы сдвига фаз в ветвях и во всей цепи, мощности ветвей и всей цепи. Построить векторную диаграмму цепи.

Методика расчёта линейных электрических цепей переменного тока

Выполнению курсовой работы должна предшествовать долгая и кропотливая работа по изучению цепей переменного тока, и в результате этой работы учащиеся должны знать:

физические процессы в цепях переменного тока;

методику расчета цепей переменного тока с помощью векторных диаграмм;

символический метод расчета;

методику расчета трехфазных цепей;

методику расчета линейных цепей с несинусоидальными напряжениями и токами.

Номер варианта для заочного отделения определяется по двум последним цифрам шифра.

Расчёт неразветвлённой цепи с помощью векторных диаграмм

В задании на курсовую работу сопротивления даны в комплексной форме. Так как расчёт цепи нужно выполнить с помощью векторных диаграмм, определяем соответствующие заданным комплексам активные и реактивные сопротивления: R1 = 2 Ом, XC1 = 3 Ом, R2 = 14 Ом, XC2 = 12 Ом, XL3 = 18 Ом.

Из заданных приёмников составляем неразветвлённую цепь (рис 1.1).

 Определяем активные и реактивные сопротивления всей цепи:

Построение топографической векторной диаграммы начинаем с вектора тока, который откладываем вдоль положительной горизонтальной оси координат. Векторы напряжений на участках строятся в порядке обтекания их током с учётом того, что векторы напряжений на активных элементах R1 и R2 совпадают по фазе с током и проводятся параллельно вектору тока; вектор напряжения на индуктивности L3 опережает ток по фазе на угол 900 и поэтому откладывается на чертеже вверх по отношению к току; векторы напряжений на ёмкостях C1 и С2 отстают от тока по фазе на угол 900 и откладываются на чертеже вниз по отношению к току.

Метод активных и реактивных составляющих токов

Этот метод предусматривает использование схемы замещения с последовательным соединением элементов (рис 2.1). В данном случае три параллельные ветви рассматриваются как три отдельные неразветвлённые цепи, подключенные к одному источнику с напряжением U. Поэтому в начале расчёта определяем полные сопротивления ветвей:

 Z1 =  =  = 3,61 Ом;

 Z2 =  =  = 18,4 Ом;

 Z3 = XL3 = 18 Ом.

Метод проводимостей

Метод проводимостей основан на применении схемы замещения с параллельным соединением элементов (рисунок 2.3).

 Расчёт начинают с определения активных, реактивных и полных проводимостей ветвей и всей цепи:

  G1 = R1 / Z12 = 2 / 3,612 = 0,153 См;

 BC1 = XC1 / Z12 = 3 / 3,612 = 0,23 См;

Расчёт сложных цепей переменного тока символическим методом

Комплексные числа

Для расчёта электрических цепей переменного тока с применением комплексных чисел необходимо знать формы их выражения. Алгебраическая форма имеет вид:

А = а + jb (3.1)

где а – вещественная часть, b – мнимая часть, j =  – мнимая единица.

 

 

 

 

 

Комплексное число можно показать на комплексной плоскости как вектор, конец которого имеет координаты а и b (рисунок 3.1). По горизонтальной оси откладываются вещественные числа, а по вертикальной – мнимые.

Комплексное число A = a – jb = A (Cos α – j Sin α) = A * ejα называется сопряжённым. Действия с комплексными числами выполняются так же, как действия с алгебраическими выражениями. Наиболее удобными для расчётов в комплексной форме являются микрокалькуляторы: SR-135 "CITIZEN"; SC-503 "CEDAR"; SC-105 "SHARP" и другие, подобные им по содержанию расширенной клавиатуры, имеющие специальный режим работы с комплексными числами, включаемый клавишами <Shift> или <2nd> + <CPLX>.

Действия с комплексными числами на этих калькуляторах выполняются в алгебраической форме. Однако они позволяют переводить комплекс из алгебраической формы в показательную и наоборот.

Например, переведём комплекс А = 3 – j4 в показательную форму, для этого используем тест: <Shift>, <CPLX>, <3>, <а>, <4>, <+/->, <b>, <Shift>, <a> (получаем модуль А=5), <b> (получаем угол α = –53,13°), то есть A = 3 – j4 = 5 * e-j53,13.

Для обратного перевода из показательной формы в алгебраическую применяется тест: <5>, <a>, <53,13>, <+/->, <b>, <Shift>, <a>,– (получаем вещественную часть а = 3), <b>,– (получаем мнимую часть b =–4). При этом клавиша <DRG> должна быть в положении <DEG>, которое индицируется на табло калькулятора.

Расчёты можно выполнять и на отечественных программируемых микрокалькуляторах типа МК-54, МК-56 и др.

Характеристики и параметры цепей переменного тока в комплексной форме.

Так как теоретический материал по данной теме рассмотрен в учебниках, напомним только основные формулы.

Ток в комплексной форме:

I = I * ejy

где φ - начальная фаза, I - действующее значение тока.

Напряжение в комплексной форме:

U = U * ejy

Комплексное полное сопротивление:

Расчёт сложных цепей переменного тока символическим методом

Метод узловых и контурных уравнений

Составляем из заданных электроприёмников цепь с двумя узлами, как это показано на рисунке 3.3. Комплексная схема замещения такой цепи показана на рисунке 3.4.

 Сущность метода состоит в составлении системы уравнений по первому и второму законам Кирхгофа. Расчёт производим в следующем порядке.

По первому закону составляем (n – 1) независимых уравнений, где n – количество узлов в схеме. Выбираем узел А.. По второму закону нам остаётся составить два уравнения, так как число уравнений в системе должно быть равно количеству неизвестных токов, а их три. Направления токов в ветвях выбираются произвольно. Направления обхода контуров принимаем (услов- но) по часовой стрелке. Таким образом, система уравнений в комплексной

форме включает в себя одно уравнение, составленное по первому закону Кирхгофа и два уравнения, составленные по второму закону:

Метод контурных токов

 Намечаем в независимых контурах заданной цепи, как показано на рисунке 3.4, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:

 IK1 * (Z1 + Z2) – IK2Z2 = E1 – E2;

 -IK1 * Z2 + IK2 * (Z2 + Z3) = E2.

  Подставляем данные в систему:

IK1 * (2 – j3 + 14 – j12) – IK2 * (14 – j12) = 100 – 65;

 -IK1 * (14 – j12) + IK2 * (14 – j12 + j18) = 65.

IK1 * (16 – j15) – IK2 * (14 – j12) = 35;

 -IK1 * (14 – j12) + IK2 * (14 + j6) = 65.

 Решаем систему с помощью определителей. Определитель системы:

Метод упрощения схем

 Для того чтобы показать, как рассчитывать цепь методом упрощения схем, предположим, что в источнике с э.д.с. E1 произошло короткое замыкание между зажимами, то есть E1 = 0. Электрическая схема цепи и комплексная схема замещения представлены на рисунках 3.6 и 3.7.

 Определяем эквивалентные сопротивления участков и всей цепи. Сопротивления Z1 и Z3 соединены параллельно, поэтому их эквивалентное сопротивление

Z1 3 =  =  = 2,83 – j3,22 Ом

Математика вычисление производной