Выбор типа выпрямителя и трансформатора

Выбор типа выпрямителя.

Так как однофазный мостовой двухполупериодный выпрямитель обладает рядом преимуществ по сравнению с другими схемами выпрямления, то его целесообразно выбрать в качестве схемы выпрямления.

Однофазный мостовой двухполупериодный выпрямитель

Выбор типа сглаживающего фильтра.

Так как ток нагрузки меньше 0,5 А, то в качестве фильтра необходимо взять емкостный фильтр.

Емкостный фильтр является наиболее простым из всех видов сглаживающих фильтров. Он состоит из конденсатора, включаемого параллельно нагрузке. Коэффициент пульсаций напряжения на

выходе выпрямителя с емкостным фильтром может быть найден по формуле:

  Kп. ≈ 1 /( 2mf RнC )

где m зависит от схемы выпрямителя (m = 1 для однофазного однополупериодного выпрямителя, m = 2 для однофазного двухполупериодного и мостового выпрямителей),f - частота входного переменного напряжения.

Из приведенной формулы видно, что коэффициент пульсации на выходе выпрямителя с емкостным фильтром обратно пропорционален емкости применяемого конденсатора и величине сопротивления нагрузки.

Поэтому применение такого фильтра рационально только при достаточно больших значениях этих величин. По мере совершенствования технологии изготовления конденсаторов большой емкости, рассматриваемый тип фильтра вследствие своей простоты и эффективности находит все большее применение.

Выбор типа трансформатора.

Ввиду того, что маломощные трансформаторы стержневого типа с двумя катушками имеют лучшее охлаждение и требуют меньшего расхода меди ввиду меньшей средней длины витка и возможной большей плотности тока в обмотках, то я возьму именно этот тип (рис. а ).

 Ориентировочное значение активного сопротивления трансформатора, приведенного к фазе вторичной обмотки, подсчитывается по формуле

 

а ориентировочное значение индуктивности рассеяния трансформатора, приведенной к фазе вторичной обмотки, — по формуле

Расчет выпрямителей, работающих на нагрузку с емкостной реакцией.

Аналитические формулы получим на примере однотактного трехфазного выпрямителя, схема которого и временные диаграммы, поясняющие его работу, приведены на рис. 1

Здесь приняты следующие обозначения: r – активное сопротивление фазы выпрямителя, равное сумме прямого сопротивления вентиля (полупроводникового диода) rпр и активного сопротивления обмоток трансформатора rтр, приведенного к его вторичной обмотке; Uн , Iн – номинальные значения выпрямленного напряжения и тока; U2макс, u2 – амплитудное и мгновенное значения напряжения на зажимах вторичной обмотки трансформатора; I2макс, i2 – амплитудное и мгновенное значения тока вторичной обмотки трансформатора и диода; θ - угол отсечки тока через диод; С0 – емкость конденсатора; R – сопротивление нагрузки.

Приближенное значение прямого сопротивления диода rпр должно определяться по статическим вольт-амперным характеристикам выбранного типа диода. При отсутствии таковых прямое сопротивление можно вычислить по приближенной формуле

 rпр = UД ПР /(3.Iн) 

Здесь UД ПР – прямое падение напряжения на диоде, измеренное при протекании тока Iн. Для кремниевых диодов можно принять UД ПР = 1 В, а для диодов Шоттки – 0,6 В.

 rпр =  = 0,74 Ом

 r = rпр + 2 · rmp = 12.6 +2·0.74 = 14,08 Ом (так как мостовая схема, необходимо взять два диода)

 p = 2 (однофазный мостовой двухполупериодный выпрямитель)

Действующее значение тока первичной обмотки трансформатора для двухтактных схем выпрямления рассчитывается по формуле

 I1 = I2/kтр (13)

где kтр = U1/U2 - коэффициент трансформации. Величины I1 для различных схем выпрямления приведены в табл. 1.

kтр = 220 / 487.5 = 0,451

I1 = 1,04 / 0,451 = 2,3 A

I1 = 2,3 A

Габаритная мощность трансформатора PГАБ , определяющая его габаритные размеры, равна полусумме мощностей первичной P1 и вторичной P2 обмоток, т.е.

 PГАБ = 0,5 (P1 + P2); (14)

Коэффициент пульсаций выпрямленного напряжения может быть определен из следующих соображений.

Так как сопротивление конденсатора для первой гармоники выпрямленного напряжения всегда много меньше сопротивления нагрузки XC << RН, то переменная составляющая тока замкнется в основном через конденсатор. Для высших гармоник сопротивление конденсатора будет еще меньше, и поэтому с достаточной для практических расчетов точностью амплитуду пульсаций по первой гармонике можно определить из следующего выражения:

  UМАКС 01 = IМАКС 01. XC = IМАКС 01/(pw C) (20)

где IМАКС 01 – амплитуда первой гармоники тока, протекающего через конденсатор. За один период изменения тока питающей сети через конденсатор будет проходить p импульсов тока длительностью 2θ.

Разложив ток конденсатора в ряд Фурье и взяв первую гармонику разложения, с учетом (20) и (7) получим амплитуду пульсации в виде:

Расчет трансформаторов малой мощности

(Методика)

ИСХОДНЫЕ ДАННЫЕ:

Напряжение питания U1 = 220 B

Частота питающего напряжения f = 400 Гц

Напряжения вторичных обмоток U2 = 487.5 B

Токи вторичных обмоток I2 = 1.05 A

ВВЕДЕНИЕ

Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток той же частоты, но другого напряжения.

Трансформаторы малой мощности (ТММ) предназначены, в основном, для питания аппаратуры релейных схем, выпрямительных устройств, анодных цепей и цепей накала различных электронных приборов.

Указанная нагрузка носит преобладающий активный характер, что  учтено в данной методике / I /.

Порядок расчета

форма и геометрические размеры магнитопровода

Конструктивные данные трансформатора определяются из следующих известных из теории зависимостей для действующих значений первичного напряжения U1 и первичного тока I1:

E1 = 4,44 f w1 Фm ; I1 = δ1 Sпр1

где δ1 - плотность тока в первичной обмотке, А/мм2 ;

Sпр1 - сечение меди провода первичной обмотки, мм2.

Подставив в эти формулы выражения

Для малых мощностей (от единиц до нескольких десятков ватт, при напряжениях, не превышающих 1000 В и частоте сети от 50 до 400 Гц следует рекомендовать броневые трансформаторы при использовании как пластинчатых, так и ленточных магнитопроводов.

Наиболее широко применяются пока пластинчатые магнитопроводы. Броневые трансформаторы, имеющие одну катушку, значительно технологичнее стержневых в изготовлении и проще по конструкции, но уступают при малых мощностях стержневым трансформаторам по удельной мощности на единицу веса и объема.

При мощностях от нескольких десятков до нескольких сотен вольт-ампер при частоте 50 Гц и до нескольких киловольт-ампер - при частоте 400 Гц наиболее перспективными являются стержневые двухкатушечные трансформаторы с ленточным магнитопроводом.

Маломощные двухкатушечные трансформаторы стержневого типа имеют лучшее охлаждение и требуют меньшего расхода меди ввиду меньшей средней длины витка и возможной большей плотности тока в обмотках.

В практике изготовления магнитопроводов для маломощных трансформаторов в настоящее время наибольшее применение нашли электротехнические стали марок Э42 и Э310 толщиной листа 0,35 мм (при частоте 50 Гц),

Э44 толщиной листа 0,2 мм (при частоте 400 Гц), а также сталь марки ХВП

Такая температура перегрева достигается, если плотность тока выбрана по таблице 2 с учетом мощности трансформатора, конструкции магнитопровода и частоты сети.

В таблице 2 приведены рекомендуемые значения плотности тока для медных проводников.

В большинстве случаев применяют именно медные провода, поставляемые кабельной промышленностью с готовой изоляцией.

Провода, как правило, круглые. При больших сечениях могут применяться и провода прямоугольного сечения.

Определение тока холостого хода

После того, как выбран магнитопровод трансформатора, нетрудно найти величины полных потерь в стали Рст , намагничивающей мощности Qст, абсолютное и относительное значения тока холостого хода.

Относительное значение - это ток холостого хода 10 , выраженный в % от первичного номинального тока.

Полные потери в стали могут быть определены по формуле:

Рст = DРст Gст (4)

где DРст - удельные потери, Вт/кГ;

Gст - вес магяитопровода, кГ.

Величина DРст зависит от выбранного значения магнитной индукции, марки стали, ее толщины и частоты сети. На рис. 3 и 4 приведены экспериментальные кривые зависимости удельных потерь в трансформаторных сталях от индукции для наиболее часто применяемых марок (для частот 50 Гц и 400 Гц, соответственно).

Полная намагничивающая мощность Qст зависит от выбранного значения магнитной индукции, марки стали, ее толщины, конструкции магнитопровода и его геометрических размеров, а также от частоты сети.

Абсолютное и относительное значения реактивной составляющей тока холостого хода находятся по формулам:

 I0р = Qст/U1 [A]; I0р% = (I0р/I1н).100 = (Qст/S1н) .100 (7)

  I0p = 74,4/220 = 0,338 A

I0p% = (0,338/2,35) . 100 % = 14,38 %

Величина относительного тока холостого хода на основании известных I0а% и I0р% равна: 

Расчет обмоток

Расчет обмоток трансформатора заключается в определении числа витков и диаметра провода каждой из них.

1. На основании формулы (1) имеем:

w1 = (E1104)/( 4,44 f Bm Fст.акт); w2 = (E2104)/( 4,44 f Bm Fст.акт);

w3 = (E3104)/( 4,44 f Bm Fст.акт) и.т.д. (9)

Все величины, входящие в правые части приведенных выражений известны, за исключением э.д.с.

Если обозначить величины падений напряжений в обмотках, выраженные в % от номинального, через DU1% , DU2% и.т.д., то э.д.с. обмоток могут быть найдены из выражений

 ;   ;  и.т.д. (10) 

2. Следует иметь в виду, что в таблице 2 приведены средние значения плотности тока для всей катушки в целом. Поэтому, определяя плотность тока в первичной обмотке, расположенной непосредственно на магннтопроводе, следует уменьшать средние значения на 15 – 20%; соответственно следует увеличивать плотности тока во вторичных обмотках на 10 – 15%.

Сечения проводов обмоток определяются по формуле

  , [мм2] (11)

Ток первичной обмотки, необходимый для определения сечения провода этой обмотки, находят по формуле

3. Следующим этапом является выбор марки провода. При изготовлении обмоток трансформаторов малой мощности наиболее широко применяются провода с эмалевой изоляцией, т.к. такой изоляционный слой дешев и имеет малую толщину. Недостатком проводов с эмалевой изоляцией (типа ПЭЛ) является низкая механическая прочность изолирующего слоя. Однако в настоящее время выпускаются провода с высокопрочной эмалевой изоляцией с одинарным и двойным покрытием (ПЭВ- 1 и ПЭВ-2). Провода марок ПЭЛ и ПЭВ-1 рекомендуются при напряжениях обмоток до 500 В, при напряжениях свыше 500 В следует применять ПЭВ-2. Провода других марок используются в специальных трансформаторах.

Двухсторонняя толщина изоляции проводов(округленно), мм.

Конструкция обмоток

Конструктивный расчет обмоток заключается в выборе основания для намотки (гильзы или каркаса), длины намотки, числа витков в слое и числа слоев каждой обмотки, а также в выборе межслоевой и межобмоточной изоляции. Эскиз каркаса с обмотками для трехобмоточного трансформатора представлен на рис. 7.

Катушка с обмотками у броневого трансформатора одна и располагается на среднем стержне. У стержневого трансформатора обычно две катушки и находятся они на обоих стержнях, причем каждая катушка содержит половинное число витков соответствующей обмотки трансформатора.

Проверка размещения обмоток производится в следующей последовательности:

а) определяется число витков в слое wс согласно зависимостям:

в) Для стержневых магнитопроводов, у которых обмотки располагаются на обоих стержнях (две катушки) и содержат половинное число витков каждой обмотки, полная толщина намотки одной катушки находится из зависимости:

 D = δ1/2 + δ2/2+ ……. + δn/2+ (δ' +1) + n.dмо, мм (17)

где dмо - толщина межобмоточной изоляции, мм;

 n - число обмоток.

При напряжениях, не превышающих 1000 B, в качестве материала для межобмоточной изоляции обычно используются различные марки изоляционной бумаги, намотанной в несколько слоев; общую толщину этой изоляции (dмо) при этом можно принимать равной 0,2 -  0,3 мм. В формулах (16) и (17) учитывается и толщина изоляции поверх крайней обмотки.

Определение температуры перегрева обмоток

После того, как найдены геометрические размеры обмоток трансформатора, можно перейти к определению их рабочей температуры. Прежде всего необходимо найти величину суммарной мощности потерь в обмотках каждой катушки,

  (18)

 где, кроме выше обозначенного:

r - сопротивление провода обмотки, Ом;

ρм - удельное сопротивление медного провода при рабочей температуре, Ом . см.

В формуле (18) δ в А/мм2 , Sпр в см2 , lпр - общая длина провода обмотки в см.

Заменяя в (18) произведение Sпр lпр его значением из

Как было замечено выше, в трансформаторах малой мощности нагрев магнитопровода практически не влияет на температуру перегрева обмоток Dtм по отношению к температуре окружающей среды. Поэтому температуру перегрева можно определить по формуле:

  (25)

где Pм кат потери в меди одной катушки, Вт;

  Fм кат - поверхность охлаждения данной катушки, см2;

aм - коэффициент теплопередачи, Вт/см2°С.

В связи с тем, что часть торцевых поверхностей катушки и часть ее боковых поверхностей, закрытые магнитопроводом, в процессе передачи тепла окружающей среды практически не участвуют, можно считать, что охлаждающая поверхность в формуле (25) включает в себя лишь открытые боковые поверхности данной катушки:

Определение веса трансформатора

Ранее из таблицы 6 или 7 был выписан вес магнитопровода (стали) рассчитываемого трансформатора Gст , г. По формуле (22) были рассчитаны веса меди каждой обмотки Gм1, Gм2 и т.д. Следовательно, вес меди обмоток одной катушки равен:

 Gм кат = Gм 1+ Gм 2

Gм кат = 0,091 + 0,067 = 0,158 кг

Поскольку при определении этого веса не были учтены веса изоляции проводов, межслоевой и межобмоточной изоляции, а также вес каркаса, то необходимо Gм кат увеличить на 5%, получая вес катушки с обмотками Gкат. Если катушек несколько, например k, то это соответствующим образом учитывается при подсчёте веса трансформатора:

Математика вычисление производной