Теория функций комплексной переменной

Комплексные числа.

Для двух комплексных чисел с нулевой мнимой частью z1 = x1 + 0 i и z2 = x2 + 0 i получим z1 + z2 = (x1 + x2) + (0 + 0) i , z1 z2 = (x1x2 – 0 0) + (0 x1 + 0 x2) i, т.е. для множества комплексных чисел с нулевой мнимой частью операции сложения и умножения не выводят за пределы этого множества.

Для операции умножения справедливы свойства

Переход от тригонометрической формы к алгебраической

Рассмотрим деление комплексных чисел

В заключение рассмотрим операцию извлечения корня n-ой степени из комплексного числа z.

Задание кривых и областей на комплексной плоскости

Дифференциальные уравнения

Определение функции комплексной переменной ничем не отличается от общего определения функциональной зависимости

Геометрическое изображнение ФКП. Задание функции w = f(z) как пары u = u(x, y), v = v(x, y)  наводит на мысль изображать ФКП как пару поверхностей u(x, y), v(x, y) в трёхмерном пространстве, однако этот способ неудобен, так как он не позволяет осмыслить пару (u, v) как комплексное число

Степенная функция Мы рассматриваем функцию w = z2 в верхней полуплоскости С +, несмотря на то, что она определена во всей плоскости С, по той причине, что она однолистна в этой полуплоскости

Предел ФКП

Дифференцируемость функции комплексной переменной

Условия Коши-Римана (Даламбера-Эйлера).Сейчас мы сформулируем и докажем важнейшую в теории ФКП теорему о необходимых и достаточных условиях дифференцируемости (а, следовательно, аналитичности) функции.

Примеры вычисления производных

Конформность дифференцируемого отображения

Гармоничность действительной и мнимой частей дифференцируемой функции

Может ли функция v(x, y) = e -y(xcos x - ysin x) быть мнимой частью некоторой аналитической функции w = f(z)? В случае положительного ответа найти функцию w = f(z).

Техника нахождения неопределённых интегралов в теории функций комплексной переменной в основном та же, что и в математическом анализе; таблица основных интегралов в обоих случаях одинакова, поскольку одинакова таблица производных.

Числовые ряды с комплексными членами. Все основные определения сходимости, свойства сходящихся рядов, признаки сходимости для комплексных рядов ничем не отличаются от действительного случая.

Исследовать на сходимость ряд .

Свойства сходящихся рядов. Для сходящихся рядов c комплексными членами справедливы все свойства рядов с действительными членами: Необходимый признак сходимости ряда. Общий член сходящегося ряда стремится к нулю при .

Степенные комплексные ряды .

Элементарные функции комплексной переменной .

Тригонометрические функции. Определим эти функции соотношениями , .

Интегрирование функций комплексной переменной.

 

Интегральная теорема Коши. Интеграл от ФКП.

Свойства интеграла от ФКП

Теорема Коши для многосвязной области

Первообразная аналитической функции. Если функция w = f ( z) аналитична в односвязной области D, то, как мы доказали, интеграл по кривой   зависит только от начальной и конечной точек и не зависти от формы кривой.

 Мы доказали, что интеграл по замкнутому контуру от аналитической функции равен нулю. Сейчас мы испортим функцию в одной-единственной точке z0 введением множителя ; поразительно, какие глубокие выводы получил Коши для интегралов вида .

Интегральная формула Коши. Пусть w = f(z) аналитична в области D и L - замкнутая кусочно-гладкая кривая, содержащаяся в D вместе с областью D1, которую она ограничивает. Сформулируем несколько следствий из доказанной теоремы.

Значения аналитической в некоторой области функции полностью определяются её значениями на границе этой области.

Применение интегральных формул Коши к вычислению интегралов.

Ряды Тейлора и Лорана

Стандартные разложения. Для однозначных функций разложения в ряд Тейлора в принципе не могут отличиться от изучавшихся в прошлом семестре разложений

Решение задач на разложение функций в ряд Тейлора .

Интегральная формула Коши. Изменим в интеграле по внутренней окружности направление обхода на противоположное

Примеры разложения функций в ряд Лорана. Требуется получить все возможные разложения в ряд Лорана по степеням z – 2 функции .

Разложить функцию  в ряд Лорана по степеням .

Изолированные особые точки аналитической функции. Вычеты.

Нули аналитической функции.

Точка а называется изолированной особой точкой функции f(z), если существует окрестность этой точки, в которой f(z) аналитична во всех точках, за исключением точки а

Признаки особых точек по значению .

Теорема о связи нулей и полюсов. Функция f(z) имеет в точке z = a – полюс n-го порядка тогда и только тогда, когда функция  имеет в этой точке нуль n-го порядка.

Вычет в устранимой особой точке равен нулю. Это следует из определения устранимой особой точки: главная часть ряда Лорана отсутствует, все коэффициенты с отрицательными индексами равны нулю, A-1 = 0.

Вычет в существенно особой точке находится из разложения функции в ряд Лорана.

Основная теорема о вычетах. Пусть функция f(z) аналитична во всех точках ограниченной замкнутой области , границей которой является контур L, за исключением конечного числа особых точек z1, z2, z3, …, zn, расположенных внутри L.

Бесконечно удалённая особая точка

Вычет функции в бесконечно удалённой особой точке.

Математика вычисление производной