Решение задач на вычисление пределов

Множества решение задач курсовой работы

Предел функции одной переменной.

4.4.1. Предел функции.

 В этом разделе мы изучим основное понятие математического анализа - предел функции. Все остальные объекты, которые встречаются в анализе (производная, интеграл и т.д.) определяются с помощью предела.

4.4.1.1. Определение предела функции в точке.

 Опр.4.4.1. Пусть а - предельная точка области определения Х функции f(x). Число b называется пределом функции при х, стремящемся к а, если для любого числа e>0 существует такое число d (вообще говоря, положительное и зависящее от e), что если хÎХ принадлежит также проколотой d-окрестности  точки а, то значение функции f(x) принадлежит e-окрестности числа b.

Обозначения: ; f(x)® b при x® а; .

Краткая форма записи: .

Неравенство  расписывается в виде двустороннего неравенства как   или . Аналогично неравенство  можно расписать как . Поэтому смысл определения предела таков: , если для любой наперед заданной степени близости значений f(x) к числу b мы в состоянии найти такую близость аргумента х к числу а, которая обеспечивает эту близость f(x) к b. Заметим, что в определении никак не участвует значение f(а) функции f(x) в точке а, в частности, f(а) не обязательно должно быть равным b; более того, f(x) может быть вообще не определена в точке а.

 Рассмотрим два простых примера. Докажем, что 1. ; 2.  (дальше мы увидим, что предел любой элементарной функции при стремлении х к любой точке области определения этой функции равен значению функции в предельной точке).

Возьмём "e>0. Требуется найти такое d>0, что 0<| x-2 |<dÞ| x2-4 |<e, т.е. | (x-2)(x+2) |<e. Договоримся сразу брать d<1, тогда из | x-2 |<dÞ2-d<x<2+dÞx<3Þx+2<5. Неравенство

| (x-2)(x+2) |<e будет обеспечено, если . Таким образом, если в качестве d взять , то при | x-2 |<d(e) получим |x+2|<5Þ| (x-2)(x+2) |=| x-2 || x+2 |<*5=e, что и требовалось.

 Возьмём "e>0. Требуется найти такое d>0, что 0<| x-p/6 |<dÞ| sin x-1/2 |<e~

| sin x- sin(p/6)|<e ~<e.Так как , |sin a|<|a| при a¹0, то требуемое неравенство будет выполнено, если взять d(e)=e (Тогда из <| x-p/6 |<d=eÞ ; , что и требовалось.

Более сложный пример-функция Дирихле

В любой окрестности любого вещественного числа а имеются и рациональные, и иррациональные точки, обеспечить одновременное выполнение неравенств | b-1 |<e и | b-0 |<e при e<1/2 невозможно ни при каком значении b, следовательно, функция Дирихле не имеет предела ни при каком стремлении аргумента.

Рассмотрим ещё одно определение предела, эквивалентное предыдущему.

Приложения интеграла: длина дуги кривой

Пусть незамкнутая, не имеющая точек самопересечения кривая задана параметрическим уравнением , причем  непрерывны на .


Пусть  имеет координаты . . Рассмотрим ломаные линии, соединяющие выбранные вышеуказанным способом точки.

Определение. Если существует предел длины ломаной при стремлении к 0 максимальной длины звена ломаной, то этот предел называется длиной дуги кривой (а кривая называется спрямляемой или имеющей длину).

  Опр.4.4.1. Пусть а - предельная точка области определения Х функции f(x). Число b называется пределом функции при х, стремящемся к а, если для любого числа e>0 существует такое число d (вообще говоря, положительное и зависящее от e), что если хÎХ принадлежит также проколотой d-окрестности  точки а, то значение функции f(x) принадлежит e-окрестности числа b.

Опр.4.4.2. Пусть {xn | xnÎX, xn ¹a} - последовательность точек области определения функции f(x), сходящаяся к точке а. Если для любой такой последовательности {xn} последовательность значений функции { f(xn)} сходится к числу b, то b называется пределом f(x) при x®а. (В МГТУ опр.3.4.1 принято называть определением Коши, опр.3.4.2 - определением Гейне).

Предел функции на бесконечности.

Опр.4.4.3. Пусть область определения Х функции f(x) неограничена. Число b называется пределом функции при х, стремящемся к µ, если для любого числа e>0 существует такое число K, что если хÎХ удовлетворяет условию | x |> K, то значение функции f(x) принадлежит e-окрестности числа b.

Бесконечно большие функции.

Опр.4.4.8. Функция f(x) называется бесконечно большой при х®а, если .

Обозначение: .

Опр.4.4.9. Функция f(x) называется положительной бесконечно большой при х®а, если .

Опр.4.4.9. Функция f(x) называется отрицательной бесконечно большой при х®а, если .

Такие же определения даются для случаев х®а+0, х®а-0, х®+¥, х®-¥.

Бесконечно малые (БМ) функции.

Опр. 4.4.10. Функция f(x) называется бесконечно малой при х®a, если .

БМ функции принято обозначать греческими буквами:a(х), b(х) и т.д, так и будем делать. Перевод определения на язык e-d:

a(х) - БМ при х®a Û {"e>0 $d: 0<| x-a |<dÞ|a(х)|<e}.

БМ обладают всеми свойствами функций, имеющих предел. В этом разделе мы изучим специфические свойства БМ.

Теор. 4.4.7. Произведение БМ на ограниченную функцию - БМ функция.

Арифметические действия с пределами.

Теорема 4.4.10. Пусть функции f(x), g(x) имеют предел при х®a, С=const. Тогда имеют пределы функции С f(x), f(x)±g(x), f(x)g(x),  ( если ), и

Второй замечательный предел. Изучая пределы последовательностей, мы доказали, что $. Распространим это доказательство на случай действительной переменной, докажем, что . Пусть n=E(x), тогда n£ x <n+1. Если x ®+¥, то и n®¥, поэтому можем считать n >1. Из неравенства  вследствие монотонного возрастания степенной функции с аргументом и степенью >1, получим

Сравнение поведения функций при х®а. Главная часть функции.

 Здесь мы определим символику, которая применяется в математической и технической литературе для сравнительного описания поведения функций вблизи предельной точки.

  Определения. 4.4.8.1. f(x)~g(x) (f(x) эквивалентна g(x)) при х®а, если f(x)= s(x)g(x), где s(x)®1 при х®а. Если g(x)¹0 в окрестности точки а, то f(x)~g(x), если =1.

В остальных определениях мы не будем писать х®а, но это везде подразумевается. Всё, что будет рассматриваться, верно и в случаях х®а-0, х®а+0 и т.д. В скобках будут даваться равносильные определения для случая, когда g(x)¹0 в окрестности точки а.

Сравнение бесконечно малых функций.

 В предыдущем разделе введены определения, описывающие поведение при х®а произвольных функций. Здесь мы уточним эти определения для случая бесконечно малых функций. Поведение БМ функций сравнивается, если существует конечный или бесконечный предел их отношения. Итак, пусть a(х)®0, b(х)®0

Таблица эквивалентных бесконечно малых.

 Здесь мы с помощью рассмотренных в 4.4.7 пределов составим таблицу эквивалентных БМ функций и выпишем следующие из них выражения для главных частей (они подчёркнуты).

Предел функции в точке и на бесконечности. Бесконечно малые и бесконечно большие функции. Основные теоремы о пределах. Замечательные пределы. Сравнение бесконечно малых. Эквивалентные бесконечно малые и использование их при вычислении пределов. Непрерывность функции в точке. Точки разрыва функции. Непрерывность функции на отрезке. Свойства непрерывных на отрезке функций.
Требования, предъявляемые к вычислительным сетям Производные и дифференциалы высших порядков