Операции над множествами Числовые множества. Свойства предела Критерий Коши Понятие производной

Предел последовательности

Нестандартный анализ – такой вид математического анализа, который занимается исследованием бесконечно малых величин в соответтвии с новой вычислительной системой, основываясь на принципе переноса числовых значений

Определение . Последовательность xn называется неограниченной, если

" c>0 $ N: |xN| > c

Неограниченная последовательность может быть односторонне ограниченной, то есть ограниченной или сверху, или снизу. Пример неограниченной сверху последовательности: xn = n.

Понятие предела числовой последовательности хорошо иллюстрируется на следующем примере. Пусть задана последовательность xn = 1/n. Изобразим ее члены точками на числовой оси (рис. 12).


Можно заметить, что члены последовательности с ростом номера n как угодно близко приближаются к 0. При этом величина xn становится все меньше и меньше. Очевидно, что пределом данной последовательности будет 0.

Дадим строгое определение предела числовой последовательности.

Определение 25 (определение предела последовательности). Число A называется пределом последовательности xn, если

" U(A) $ N: " n > N xn О U(A).

Приведем другое определение предела, которое является эквивалентным первому.

Определение 26 (определение предела последовательности). Число A называется пределом xn, если

" e > 0 $ N: " n > N |xn-A |< e

Заметим, что здесь использованы логические символы: квантор всеобщности " (вместо слова "для любого") и квантор существования $ (вместо слова "найдется").

Предел числовой последовательности обозначается limn®Ґ xn = A или xn® A при n® Ґ. Последовательность, имеющая предел, называется сходящейся, в противном случае расходящейся.

Пример 18. Пусть xn = 1/n, покажем, что

limn® Ґ1/n = 0.
Для этого запишем определение:
" e>0 $ N: " n>N |xn|<e.
То есть 1/n<e при n>N=[1/e].

Пример 19.

xn = .
Доказать, что
limn ® Ґ = 1
" e >0 $ N: " n > N |-1| < e.
1/n < e Ю n > 1/e N = [1/e]
Если e = 1/10 , то N=10 и при n > 10 следует выполнение нужного неравенства.

Выясним геометрический смысл понятия предела последовательности. Расположим члены последовательности x1,x2,..., xn,... на числовой прямой. Неравенство |xn-A|<e равносильно следующему A- e < xn < A + e, которое говорит о том, что члены последовательности xn попадают в e - окрестность точки A (рис.13). Вне этой e -окрестности может быть лишь конечное число членов данной последовательности.

 

Бесконечность, непрерывность, предел – с такими понятиями работает математический анализ. Неспроста Зенон был философом: возможно, что математический анализ – это философия математики, более-менее окультуренная под массовое понимание.
Применение закона Ампера Дифференцирование сложной и обратной функций