Операции над множествами Числовые множества. Свойства предела Критерий Коши Понятие производной

Дифференциальное исчисление Понятие дифференциала.

Дифференциальное исчисление зиждется на следующих важнейших понятиях математики, определение и исследование которых составляют предмет введения в математический анализ: действительные числа (числовая прямая), функция, предел, непрерывность.

Основные теоремы дифференциального исчисления

Теорема Ролля является частным случаем теоремы Лагранжа.

Теорема (Лагранжа). Пусть функция f(x) непрерывна на [a,b] и дифференцируема на (a,b). Тогда внутри отрезка существует по крайней мере одна точка c, такая, что
f'(c) = (f(b)-f(a))/(b-a). (8)

Доказательство. Введем новую функцию

g(x) = f(x)-f(a)-(f(b)-f(a))(x-a)/(b-a).
Эта функция удовлетворяет условиям теоремы Ролля: она непрерывна на [a,b], дифференцируема на (a,b), g(a) = g(b) = 0. Следовательно, найдется точка (a,b), такая, что
g'(c) = f'(c)-(f(b)-f(a))/(b-a) = 0.
Отсюда
f'(c) = (f(b)-f(a))/(b-a).

Геометрическая интерпретация теоремы Лагранжа приведена на рис.24. Заметим, что (f(b)-f(a))/(b-a) является угловым коэффициентом секущей, проходящей через точки A(a,f(a)),B(b,f(b)) кривой y = f(x), а f'(c) есть угловой коэффициент касательной к той же кривой, проходящий через точку C(c,f(c)). Из теоремы Лагранжа следует, что на кривой y = f(x) между точками A и B найдется такая точка C, касательная в которой параллельна секущей AB.


Следствие 2. Если производная функции f(x) равна нулю на некотором множестве, то функция тождественно постоянна на этом множестве.

Данное следствие автоматически следует из формулы (8).

 

Дифференциальное исчисление даёт аппарат для исследования функций, поведение которых в достаточно малой окрестности каждой точки близко к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия Дифференциальное исчисление: производная и дифференциал.
Дифференцирование сложной и обратной функций