Линейная алгебра Пределы

Математика задачи примеры решения

Система, имеющая хотя бы одно решение, называется совместной. Совместная система называется определённой, если она имеет единственное решение. Совместная система называется неопределённой, если она имеет бесчисленное множество решений.

Из симметрии гиперболы относительно осей координат следует, что этим же свойством обладает прямая  Прямые  и  называются асимптотами гиперболы.

На рисунке 32 показано, как с помощью основного прямоугольника гиперболы (это прямоугольник со сторонами длиной 2а и 2в, параллельными осями координат) построить асимптоты гиперболы. Из рисунка видно также взаимное расположение гиперболы и ее асимптот.

 

Рис. 32

Пример 15. Составить каноническое уравнение гиперболы, зная, что расстояние между ее фокусами равно 26, а эксцентриситет равен

Решение. По условию 2с = 26,  Следовательно, большая полуось гиперболы  Тогда малая полуось  Уравнение гиперболы имеет вид

Матричная запись системы линейных уравнений. Метод Гаусса. Критерий совместности системы линейных уравнений
Математика Дифференциалы Пределы