Линейная алгебра Пределы

Математика задачи примеры решения

Система, имеющая хотя бы одно решение, называется совместной. Совместная система называется определённой, если она имеет единственное решение. Совместная система называется неопределённой, если она имеет бесчисленное множество решений.

Кривые второго порядка

Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих декартовых координат х, у

Эллипс

Эллипсом называется множество всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Обозначим фокусы F1, F2, расстояние между ними – 2с, постоянную из определения – 2а (по условию 2а > 2с, то есть а > с). Выберем декартову прямоугольную систему координат так, чтобы ось ОХ проходила через фокусы и точка О находилась на середине отрезка F1F2. В такой системе координат F1(-с; о), F2(с; о) (рис. 28).

 

Рис. 28

Выведем уравнение эллипса в выбранной системе координат. Для этого рассмотрим произвольную точку эллипса М(х, у).

По определению  

Но  следовательно,  Преобразуем это уравнение, дважды возводя в квадрат обе части:

 

 


 

Обозначим  Разделив обе части на а2в2, получим каноническое уравнение эллипса:

 

(2.22)

Матричная запись системы линейных уравнений. Метод Гаусса. Критерий совместности системы линейных уравнений
Математика Дифференциалы Пределы