План исследования функции и построение графикаы Качественные и недорогие сейфы для офиса с доставкой по городу.

Математика задачи примеры решения

Правило Лопиталя. Это правило нахождения некоторых пределов функций при по- мощи производных

План исследования функции и построение графика

Исследование функции удобно проводить по следующему плану.

1. Область определения функции.

2. Точки пересечения графика функции с осями координат.

3. Четность, нечетность функции.

4. Исследование функции на непрерывность. Вертикальные асимптоты.

5. Невертикальные асимптоты.

6. Интервалы монотонности. Экстремумы.

7. Интервалы выпуклости, вогнутости. Точки перегиба.

8. Дополнительные точки, (по мере необходимости).

9. Построение графика.

Подчеркнем, что пункт 8 не является необходимым. его выполняют, если необходимо уточнить график.

Пример 1. Исследовать функцию и построить ее график.

1. Область определения ( ).

2. Пусть х=0, тогда у=0. Пусть у=0, тогда   и . Итак, (0;0) и  – точки пересечение графика с осями координат.

3. у() =  – функция не является ни четной, ни нечетной.

4. Функция непрерывна во всей области определения. Вертикальных асимптот нет.

5. Невертикальные асимптоты

Найдем k и b, если они существуют.   поэтому при невертикальной асимптоты не существует. Аналогично можно показать, что и при невертикальных асимптот не существует.

6. Вычислим   Найдем критические точки:   х = 1 – критическая точка. Кроме того, y' не существует при х = 0 – тоже критическая точка. Нанесем критические точки на числовую прямую и определим знаки производной в образовавшихся интервалах.

Таким образом, на интервалах (- и (1;+ функция возрастает, на интервале (0;1) убывает.

уmax = f(0) = 0, ymin = f(1)= -1.

7. Вычислим

у'' не обращается в нуль ни при каком значении х и у'' не существует при х=0. х=0 – критическая точка второго порядка. Нанесем критическую точку на числовую прямую и определим знаки второй производной в образовавшихся интервалах.

Таким образом, на интервалах ( и   график функции вогнутый, точек перегиба нет.

8. Заметим, что , то есть в точке (0;0) график имеет вертикальную касательную.

Если в интервале слева и справа от x0 производная имеет один и тот же знак, то x0 не является точкой экстремума. При этом, если функция непрерывна в этой точке, то функция монотонна в целом в этих двух интервалах
Математика вычисление производной