План исследования функции и построение графикаы

Математика задачи примеры решения

Очевидно, что прямоугольная декартова система координат является частным случаем аффинной системы координат, поэтому рассмотренные выше определения и простейшие задачи справедливы и в прямоугольной декартовой системе координат.

Дифференциальное исчисление функции одной переменной

Теорема (о связи дифференцируемости и непрерывности). Если функция у = f(x) дифференцируема в точке х0, то она непрерывна в этой точке.

Доказательство. Пусть аргумент х получает в точке х0 приращение ¹ 0. Ему соответствует некоторое приращение функции . Вычислим предел:

а это и означает непрерывность функции в точке х0.

Заметим, что обратная теорема неверна: существуют непрерывные функции, которые в некоторых точках не дифференцируемы. Примерами могут слу­жить функции у = çх çи в точке х = 0. В обоих случаях (0) не существует.

Заметим, что график у = çх çв точке х = 0 не имеет касательной, а график в точке х=0 имеет вертикальную касательную – ось Оу.

Можно показать, что для того, чтобы функция у = f(x) была дифференцируемой в точке х0, необходимо и достаточно, чтобы ее график имел невертикаль­ную касательную в точке (х0, f(х0)).

Отрезок называется направленным, если один из его концов считается началом отрезка, а другой — концом. Вектором называется направленный отрезок
Математика вычисление производной