План исследования функции и построение графикаы www.avtopremial.ru

Математика задачи примеры решения

Два вектора a и b называются коллинеарными, если они ле- жат на одной прямой или на параллельных прямых. Нулевой век- тор считается коллинеарным любому вектору. Коллинеарные векторы могут быть направлены одинаково или противоположно.

Дифференциалы высших порядков

Рассмотрим дифференцируемую функцию независимой переменной y = f(x). Дифференциал этой функции dy = f'(x)dx зависит от х и dx = Dх. Приращение dx от х не зависит, так как приращения в данной точке х можно выбирать независимо от этой точки. Рассматривая dy = f'(x)dx только как функцию от х (то есть считая dx постоянным), можно найти дифференциал этой функции. Дифференциал от дифференциала данной функции y = f(x) называется ее вторым дифференциалом или дифференциалом второго порядка и обозначается символом d2у или d2 f(x). Таким образом, по определению d2у = d(). Вычислим второй дифференциал функции y = f(x).

  Итак,

Аналогично определяются и вычисляются дифференциалы третьего, четвертого и так далее порядков. Вообще, дифференциалом n – го порядка или n-м дифференциалом функции y = f(x) называется дифференциал от ее (n-1) – го дифференциала: dny = d(dn-1y). Легко установить, что dny = f(n)(x)dxn. Дифференциал dy называют дифференциалом первого порядка. Из последней формулы следует .

Замечание. Для сложной функции форма дифференциала dny при n>1 не обладает свойством инвариантности, а значит и . Однако часто и для сложной функции f(n)(x) обозначают , понимая   не как отношение дифференциалов, а как символ, обозначающий f(n)(x).

Можно заметить, что понятие дифференцируемости функции в точке уже определялось ранее как существование производной в данной точке. Наличие двух разных определений одного и того же понятия оправдывает
Математика вычисление производной