Дифференциальное исчисление линейная алгебра Пределы

Сборник задач по физике
Электрический ток
Волновая оптика
Электромагнетизм
Варианты контрольной работы
Закон Ома для однородного участка
цепи
Правила Кирхгофа
Электромагнитная индукция
Электромагнитные волны
Цепь переменного тока
Кинематика материальной точки
Методика решения задач по кинематике
Магнитное поле в веществе
Классификация магнетиков
Основы электронной теории магнетизма
Парамагнетизм. Закон Кюри
Основы электродинамики
Уравнения Максвелла
Свободные затухающие колебания
Вынужденные электрические колебания
Резонансные явления в
колебательном контуре
Оптика Ньютона
Квантовые свойства света
Интерференция световых волн
Дифракция света
Поляризация света
Тепловое излучение
Измерение силы тока и напряжения
в цепях постоянного тока
Математика
Теория функций
комплексной переменной
Неопределённый, несобственный
и двойной интеграл
Матричный метод решения
систем линейных уравнений
Вычисление объёма тела
Векторная алгебра
Матрицы и определители
Операции над множествами
Действительные числа
Последовательность
Предел функции
Решение задач на вычисление
пределов
Задачи, приводящие
к понятию производной
Производные и дифференциалы
высших порядков
Нахождение пределов с помощью
формулы Тейлора
Комплексные числа.

Определенный интеграл

Действия над матрицами
Обратная матрица
Матричная запись
Прямая на плоскости
Уравнение прямой
Кривые второго порядка
Метод Гаусса
Метод Жордана – Гаусса
примеры пределов
исследование функции
Функции нескольких переменных
производные второго порядка
функции трех переменных
Понятие множества
Операции над множествами
Свойства операций над
множествами
Функции и отображения
Виды отображений
Мощность множеств.
Аксиоматика действительных
чисел
Числовые множества.
Принцип верхней грани.
Предел последовательности
Неограниченная
последовательность
Бесконечно малые
последовательности
Свойства предела
последовательности.
Арифметические операции
Фундаментальные
последовательности
Монотонные
последовательности
Подпоследовательность

Приложение
последовательностей
в экономике

Пример
Предел функции.
Критерий Коши
Непрерывные функции
Дифференциальное исчисление
Производная, интегралы
примеры решений
Исследовать функцию
Вычислить определитель
Методы интегрирования
Произведение матриц
Исследовать систему уравнений
Решить матричным способом
Найти обратную матрицу
Найти предел
последовательности
Рассмотрим задачу о
непрерывном
начислении процентов.
Исследовать на сходимость ряд
Теория поля
Формула интегрирования по
частям
Изменить порядок
интегрирования
Неопределенный интеграл в
экономике
Геометрические приложения
определенного интеграла
Контрольная работа
Вычислить длины дуг кривых
Тройной интеграл
Найти объем тела V
Вычислить работу векторного
поля
Вычисление несобственных
интегралов
экстремум функций двух
переменных
Вычислить производную функции
Метод интегрирования
подстановкой
Рационализация интегралов
Математическая модель
Проблемы при работе
с Adobe Illustrator
Советы при работе
с Adobe Illustrator
Печать в Illustrator
Сборочный чертеж
Параметры  резьбы
Соединение болтом
Соединение шпилькой
Сварные соединения
Общие  сведения о резьбе
Выполнить эскизы с натуры
чертеж сборочной единицы
Эскизирование деталей
Построить три вида детали
Графические работы
Основы электротехники
Задание к курсовой работе
Физические законы в электротехнике
Выбор типа выпрямителя и
трансформатора
Метод узловых и контурных уравнений
Расчёт трёхфазной цепи
Метод законов Кирхгофа
Электрические цепи переменного
синусоидального тока
Переменные ток в однородных
идеальных элементах
двухполюсник
Резонанс в сложных схемах
Топологические методы расчета
Электрические цепи трехфазного тока
Основные законы электрических цепей
Индуктивность
резонанс токов
Магнитные цепи
Определение магнитодвижущей силы
Трёхфазный трансформатор
Асинхронная машина
Выпрямители переменного тока
Однофазная схема выпрямления
Информатика
Парольная защита операционных систем
Криптографические ключи
Технологии программирования
Обработка информации

Технологии баз данных

Производная Основные понятия Пусть дана функция y = f(x). Рассмотрим два значения ее аргумента: исходное х0 и новое х. Разности = х-х0 и D y = f(x)-f(x0) = y-y0 называются соответственно приращением аргумента и приращением функции в точке х0. Теорема ( о связи дифференцируемости и непрерывности). Если функция у = f(x) дифференцируема в точке х0, то она непрерывна в этой точке.

Вычисление производной Формулы вычисления производной некоторых элементарных функций получены в курсе средней школы

Производная обратной функции Теорема. Пусть функция х = f(y) монотонна и дифференцируема в некотором интервале (a, b) и имеет в точке у этого интервала производную f'(y), не равную нулю. Примеры. Найти производную функции.

Производная степенной функции с любым действительным показателем Известно, что (xn)' = nxn-1 для натурального n. Пусть теперь n любое дейст­вительное число и х>0. Справедливо тождество xn = enlnx. Тогда у = enlnx – сложная функция и ее производная вычисляется следующим образом: y' = (enlnx)' = enlnx(nlnx)' = enlnx =  xn = nxn-1. Задание. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям

Производные высших порядков Предположим, что функция y = f(x) дифференцируема в некотором интер­вале (а, в). Тогда ее производная f'(x) в этом интервале является функцией х. Пусть эта функция также имеет производную в (а, в). Эта производная называется второй производной или производной второго порядка функции y = f(x)и обозначается y'' или f''(x).

Дифференцирование функций, заданных параметрически Если функция y = f(x), определенная на некотором интервале (а,в), такая, что уравнение (1) при подстановке в него вместо у выражения f(x) обращается в тождество, то говорят, что уравнение (1) задает функцию y = f(x) неявно или что функция y = f(x) есть неявная функция.

Дифференцирование функций, заданных неявно Если функция y = f(x), определенная на некотором интервале (а,в), такая, что уравнение (1) при подстановке в него вместо у выражения f(x) обращается в тождество, то говорят, что уравнение (1) задает функцию y = f(x) неявно или что функция y = f(x) есть неявная функция. Пример

Логарифмическое дифференцирование Функция вида y = [u(x)]v(x) называется степенно – показательной. Для вычисления ее производной (при условии, что у' существует), нужно прологарифмировать функцию по любому основанию (обычно по основанию е). Затем нужно вычислить производную полученной неявной функции. Свойства функций, непрерывных на отрезке Определение. Если функция f(x) определена на отрезке [a, b], непрерывна в каждой точке интервала (a, b), в точке a непрерывна справа, в точке b непрерывна слева, то говорят, что функция f(x) непрерывна на отрезке [a, b].

Дифференциал функции Рассмотрим функцию у = х3. Дадим некоторому значению аргумента х ¹ 0 приращение ¹ 0, тогда функция получит соответствующее приращение Dу. Вычислим его.

Теорема о связи между существованием производной и существованием дифференциала. Для того, чтобы функция y = f(x) имела в точке х дифференциал, необходимо и достаточно, чтобы она имела в этой точке производную.

Свойства дифференциала Это свойство дифференциала сложной функции называется инвариантностью формы дифференциала.

Дифференциалы высших порядков Дифференциал от дифференциала данной функции y = f(x) называется ее вторым дифференциалом или дифференциалом второго порядка и обозначается символом d2у или d2 f(x). Таким образом, по определению d2у = d().

Некоторые теоремы о дифференцируемых функциях

Теорема Ферма Пусть функция y = f(x) определена в интервале (а, в) и принимает в точке с этого интервала наибольшее или наименьшее на (а, в) значение. Если существует f'(с), то f'(с) = 0.

Теорема Лагранжа  Пусть функция y=f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b). Тогда существует хотя бы одна точка сÎ(a, b), для которой выполняется условие: .

Теорема Коши

Теорема Лопиталя (Правило Лопиталя) Пусть - функции, непрерывные на [а, b], дифференцируемые в(а, b);  при всех хb) и f(а) = (а) = 0. Примеры на применение правила Лопиталя.

Применение производной к исследованию функций

Интервалы монотонности. Экстремумы Функция у = f(х) называется возрастающей (убывающей) на некотором промежутке, если для любых значений x2>x1 этого промежутка выполняется условие f(x2) > f(x1)(f(x2) < f(x1)) . Теорема ( достаточное условие монотонности функции). Если непрерывная на отрезке [а, b] функция у = f(х) в каждой точке интервала (а, b) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b].

Выпуклость и вогнутость графика функции

Точки перегиба График дифференцируемой функции у = f(x) называется выпуклым (вогнутым) в интервале (а,b), если он расположен ниже (выше) любой своей касательной на этом интервале. Теорема ( достаточный признак существования точки перегиба). Если вторая производная непрерывной функции меняет знак при переходе аргумента через точку х0, то точка (х0; f(х0)) является точкой перегиба графика функции. Асимптотой графика функции у = f(x) называется прямая, расстояние от которой до текущей точки графика функции стремится к нулю при неограниченном удалении этой точки от начала координат.

План исследования функции и построение графика

Пример . Исследовать функцию y= x-2arctgx и построить ее график.

Пример . Исследовать функцию и построить ее график.

Элементы линейной алгебры

Определители второго порядка Определение. Выражение называется определителем 2-го порядка.

Определители 3-го порядкаОпределение. Выражение

называется определителем 3-го порядка.

Пример. Вычислить определитель: по правилу треугольника.

Алгебраическим дополнением элемента определителя 3-го порядка называется минор этого элемента, взятый со знаком плюс, если элемент стоит на пересечении строки и столбца с четной суммой номеров, и со знаком минус, если элемент стоит на пересечении строки и столбца с нечетной суммой номеров.

Пример. Вычислить определитель , разлагая его по элементам второй строки.

Определитель в правой части формулы называют транспонированным по отношению к определителю в левой части этой формулы. Если две строки (столбца) определителя равны, то определитель равен нулю. Если элементы какого-либо ряда определителя пропорциональны элементам параллельного ряда, то определитель равен нулю.

Пример. Вычислить определитель , используя свойства определителей.

Определители 4-го порядка. Методы их вычисления

Метод понижения порядка определителя основан на обращении всех, кроме одного, элементов определителя в нуль с помощью свойств определителей. Метод приведения к треугольному видузаключается в таком преобразовании данного определителя, когда все элементы его, лежащие по одну сторону одной из его диагоналей, становятся равными нулю. Суммой матриц размера называется матрица того же размера, каждый элемент которой равен сумме соответственных элементов матриц A и B:

Пример. Вычислить произведение матриц и .

Решение. Согласно определению произведение матриц получаем так: умножаем элементы первой строки матрицы A на соответствующие элементы первого столбца матрицы B, произведения складываем и ставим в первую строку и первый столбец матрицы-произведения. Умножаем далее элементы первой строки матрицы A на элементы второго столбца матрицы B, произведения складываем и ставим в первую строку и второй столбец матрицы-произведения и т.д. Матрицу, все элементы которой равны нулю, мы будем называть нулевой .

Пример . Пусть . Найти значение многочлена

Квадратная матрица называется невырожденной (неособенной), если её определитель отличен от нуля, и вырожденной (особенной), если определитель её равен нулю.

Рассмотрим матрицу,составленную из алгебраических дополнений к элементам матрицы А и называемую присоединенной к матрице А. Отметим, что алгебраические дополнения к элементам квадратной матрицы находят так же, как к элементам ее определителя. В присоединенной матрице алгебраические дополнения элементов строки стоят в столбце с таким же номером.

Пример. Найти матрицу, обратную для матрицы

Ранг матрицы Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка.

Пример. Найти ранг матрицы

Пример. Вычислить ранг матрицы

Пример. Решить систему уравнений по правилу Крамера:

Пример. Матричным методом решить систему уравнений

Теорема Кронекера-Капелли Для того чтобы система m неоднородных линейных уравнений с n неизвестными была совместной, необходимо и достаточно, чтобы

Метод Гаусса Пусть требуется решить систему АХ=В. Над строками расширенной матрицы произведем элементарные преобразования, приводящие ее к виду, когда ниже элементов а11, а22, …, аrr будут стоять нули. Этот вид матрицы будем называть трапециевидным.

Пример. Решить систему

Пример. Исследовать совместность системы

Пример. Исследовать совместность и найти общее решение системы

Однородные системы

Рассмотрим однородную систему линейных уравнений  Такая система всегда совместна, так как этой системе удовлетворяют значения х1=х2=…=хn=0. Это решение системы называют тривиальным.

Пример. Решить систему

Пределы и непрерывность функции

Предел функции Совокупность значений некоторых величин, как правило, лишенных физического содержания, представляет собой некоторые числовые множества. Будем обозначать множества большими буквами латинского алфавита: А,В,..,Х,У. Окрестностью О (а) точки а называется любой интервал a < x < b, окружающий эту точку, из которого, как правило, удалена сама точка а.

Пример. Доказать, что  (2х +1) = 7.

Пример . Функция у = sin х ограничена на всей числовой оси, так как . Функция  не ограничена на множестве, содержащем точку х = 0.

Односторонние пределы Любой интервал (a, а), правым концом которого является точка а, называется левой окрестностью точки а.  Аналогично любой интервал (a, b), левым концом которого является точка а, называется ее правой окрестностью.

Пример. Функция f(x) = x2 является бесконечно малой при x®0, а  g (x) = бесконечно большой (при x ¹ 0).

  Замечание. Если , то в силу определения предела функции получаем: ïf(x)-Aï<e при xÎ O(а, б), что означает, что f(x)A является бесконечно малой при x® a. Тогда, полагая f(x)-A=a(x), имеем f(x) = A + a(x), где a(x) ® 0 при x ® a. Рассмотрим на примерах основные приёмы раскрытия неопределенностей

Пример . Найти Пример. Найти пределы: , ,

Некоторые признаки существования предела функции Не всякая функция имеет предел, даже будучи ограниченной. Например, sin x при x ® ¥ предела не имеет, хотя £ 1.  Укажем два признака существования предела функции.

Первый и второй замечательные пределы

Теорема. Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице, то есть   .  Этот предел называют первым замечательным пределом. С его помощью вычисляют пределы выражений, содержащих тригонометрические функции.

Непрерывность функции Функция f(x), определенная на множестве Х, называется непрерывной в точке , если

Пример. Функция   является непрерывной справа в точке х = 0, слева же от этой точки она вообще не определена.

Точка разрыва функции, не являющаяся точкой разрыва первого рода или точкой устранимого разрыва, является точкой разрыва второго рода.

  Все элементарные функции непрерывны в области определения Так что  всюду непрерывна, так как всюду определена, а, например, функция  разрывна в точке .

Теорема Больцано-Коши об обращении функции в нуль.

Векторная алгебра и аналитическая геометрия

Векторная алгебра и аналитическая геометрия

Векторы. Основные понятия Вектором называется направленный отрезок. Обозначается вектор , , , , AB, a (А – начало вектора, В – его конец). Линейные операции над векторами Линейными операциями называют операции сложения и вычитания векторов и умножения вектора на число. Вычитание векторов. Разностью векторов и называется такой вектор , который в сумме с вектором дает вектор : Û .

Умножение вектора на число. Произведением вектора на действительное число называется вектор (обозначают ), определяемый следующими условиями: 1)      , 2)      при и при .

Проекция вектора на ось Углом между двумя ненулевыми векторами и называется наименьший угол ( ), на который надо повернуть один из векторов до его совпадения со вторым. Предварительно нужно привести векторы к общему началу О

Пример . При каком условии ?

Координаты вектора Рассмотрим декартову прямоугольную систему координат Oxyz. Обозначим , , – единичные векторы, направленные соответственно вдоль осей Ox, Oy, Oz (орты осей). Эти векторы называются декартовым прямоугольным базисом в пространстве.

Направляющие косинусы вектора Направление вектора в пространстве определяется углами , которые вектор образует с осями координат. Косинусы этих углов называются направляющими косинусами вектора: , , .

Деление отрезка в данном отношении

Пример. Даны вершины треугольника , , . Найти точку пересечения медиан этого треугольника и орт вектора

Пример. Показать, что точки , , лежат на одной прямой, причем A – между B и C.

Скалярное произведение векторов Скалярным произведением двух векторов (обозначается или ) называется число, равное произведению длин этих векторов на косинус угла между ними: , где .

Пример. Найти угол между диагоналями параллелограмма, построенного на векторах и .

Смешанное произведение векторов Смешанным, или векторно-скалярным произведением трех векторов (обозначается ) называется произведение вида .

Теорема. Для того чтобы три вектора были компланарны, необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.

Прямая на плоскости Пусть – заданная точка на прямой , – вектор, перпендикулярный прямой , его называют нормальным вектором прямой, и пусть – произвольная точка прямой . Пусть – заданная точка на прямой , – вектор, параллельный прямой, его называют направляющим вектором прямой, и пусть – произвольная точка прямой Пусть заданная точка на прямой , – угол наклона прямой к оси ,

Угол между двумя прямыми. Пусть прямые и заданы соответственно уравнениями , , где ,

Расстояние от точки до прямой. Пусть прямая на плоскости задана уравнением и точка имеет координаты

Пример. Прямая задана уравнением . Составить уравнения а) прямой , проходящей через точку параллельно прямой ; б) прямой , проходящей через начало координат перпендикулярно прямой .

Пример. В треугольнике с вершинами , , составить уравнения медианы , высоты , найти длину высоты

Кривые второго порядка Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих декартовых координат х, у Уравнение содержит только четные степени х, у, следовательно, кривая симметрична относительно осей координат.

Гиперболой называется множество всех точек плоскости, для каждой из которых модуль разности расстояний до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Полагая в каноническом уравнении у = 0, найдем точки пересечения гиперболы с осью ОХ: х = ±а. При х = 0 уравнение не имеет решений, то есть с осью ОУ гипербола не пересекается. Точки А1(-а; 0) и А2(а; 0) называются вершинами гиперболы. Фокальная ось (ось, на которой лежат фокусы) называется действительной осью гиперболы, а перпендикулярная ей ось – мнимой осью.

Из симметрии гиперболы относительно осей координат следует, что этим же свойством обладает прямая Прямые и называются асимптотами гиперболы.

Параболой называется множество всех точек плоскости, равноудаленных от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Уравнение содержит у лишь в четной степени, следовательно, кривая симметрична относительно оси ОХ. При х = 0 у = 0, то есть парабола проходит через начало координат.

Общее уравнение кривой второго порядка имеет вид  

Уравнение такого вида может определять: 1) эллипс (в частности, окружность), 2) гиперболу, 3) параболу, 4) пару прямых (параллельных, пересекающихся либо совпадающих), 5) точку или не определять никакой линии.

Полярная система координат на плоскости определяется заданием некоторой точки О, называемой полюсом, луча Ор, исходящего из этой точки и называемого полярной осью, и единицы масштаба

Пример. Построить в полярной системе координат точки

Пример. Дано полярное уравнение линии Построить эту линию по точкам. Найти ее декартово уравнение, расположив систему Охy

Пример. Найти полярное уравнение окружности

Неполные уравнения плоскостей Если в уравнении плоскости какие-либо из коэффициентов равны нулю, то получится неполное уравнение плоскости.

Прямая в пространстве Прямую в пространстве можно задать уравнениями, аналогичными уравнениям прямой на плоскости

Пример. Записать канонические уравнения прямой, заданной общими уравнениями

Взаимное расположение прямой и плоскости

Пусть требуется найти точку пересечения прямой и плоскости

Пример. Показать, что прямая лежит в плоскости

Поверхности второго порядка

Цилиндрической поверхностью называется поверхность, составленная из всех прямых, пересекающих данную линию L и параллельных данной прямой . Линия L при этом называется направляющей цилиндрической поверхности, а каждая из прямых, составляющих поверхность и параллельных прямой , – ее образующей

Уравнение определяет гиперболический цилиндр. Его направляющая – гипербола, лежащая в плоскости Оуz, образующие параллельны оси Ох

Конической поверхностью называется поверхность, составленная из всех прямых, пересекающих данную линию L и проходящих через данную точку Р. Линия L при этом называется направляющей конической поверхности, точка Р – ее вершиной, а каждая из прямых, составляющих коническую поверхность, – ее образующей

Эллипсоидом называется поверхность, которая в некоторой декартовой прямоугольной системе координат определяется уравнением Это замкнутая овальная поверхность, симметричная каждой из координатных плоскостей

Двуполостным гиперболоидом называется поверхность, которая в некоторой декартовой прямоугольной системе координат определяется уравнением

Математика вычисление производной