Основные понятия и определения электрических фильтров Нелинейные магнитные цепи постоянного потока

Расчет электрической цепи постоянного и переменного тока

Синтез электрических цепей

Характеристика задач синтеза

Синтезом электрической цепи называют определение структуры цепи и параметров составляющих ее элементов R, L и С по известным свойствам (характеристикам), которым должна удовлетворять цепь. Задачи синтеза цепей противоположны по цели и содержанию задачам анализа. В отличие от задач анализа, имеющих, как правило, единственное решение, задачи синтеза могут иметь несколько решений, удовлетворяющих заданным условиям. В этом случае выбирают наиболее рациональное решение (например, по стоимости, по габаритам, по массе, по числу элементов и т. д.) Кроме того, физического решения  может не существовать вообще, так как из существующих реальных элементов не всегда можно построить электрическую цепь, удовлетворяющую заданным условиям.

Пусть требуется синтезировать электрическую цепь, для которой заданы временные характеристики на входе: . Комплексное сопротивление и комплексная проводимость такой цепи равны:

,

.

Полученным значениям для Z и Y соответствуют две различные схемы замещения цепи (рис. 195а, б):

Пусть временные характеристики цепи на входе имеют вид: . Комплексное сопротивление такой цепи равно:

.

Данная цепь на основе пассивных элементов R, L и С физически нереализуема, так как в природе не существует резисторов с отрицательным сопротивлением.

С задачами синтеза на практике встречаются при проектировании сложных фильтров, корректирующих устройств в радиотехнике, технике связи, автоматике и телемеханике.

Синтез электрических цепей развивался по нескольким направлениям:

синтез цепи, заданной операторной входной характеристикой;

синтез цепи, заданной временной характеристикой в виде реакции цепи на воздействие импульса напряжения или тока прямоугольной формы, и др.

Наиболее простые результаты получены по первому направлению, которое и будет в дальнейшем рассмотрено.

2. Свойства входных операторных функций пассивных электрических цепей

Входной функцией цепи (двухполюсника) называется входное операторное сопротивление или входная операторная проводимость . Пусть задана операторная схема некоторой цепи (рис. 196):

 

Входное операторное сопротивление схемы будет равно:

.

Таким образом, входное операторное сопротивление или входную операторную проводимость   для любой схемы можно представить в виде отношения двух полиномов:

.

Входные операторные функции обладают следующими свойствами:

все коэффициенты ак и bк в числителе и знаменателе выражения Z(p) должны быть вещественными и положительными числами, так как они образуются суммами, произведениями и частными от вещественных параметров элементов R, L и С;

наивысшая степень числителя должна отличаться от наивысшей степени знаменателя не более, чем на 1;

нули и полюсы функции Z(p) должны иметь отрицательную вещественную часть;

при замене оператора Лапласа на оператор Фурье  вещественная часть функции должна быть положительной: .

Нулями функции Z(p) называются корни рк уравнения N(p)=0, при подстановке которых значение функции равно нулю: Z(pк) =0. Полюсами функции Z(p) называются корни рк уравнения М(p)=0, при подстановке которых значение  функции равно бесконечности: Z(pк) =. Известно, что свободные составляющие переходного процесса в электрической цепи описываются слагаемыми вида  и обязательно должны затухать во времени, что возможно только, если действительная часть корней рк отрицательна.

При замене оператора Лапласа на оператор Фурье  операторное сопротивление Z(p) превращается в комплексное сопротивление Z(jw)=R+jX, вещественная часть которого равна активному сопротивлению R, которое не может быть отрицательным.

Функции, обладающие перечисленными свойствами, называются положительными вещественными функциями. Только такие функции могут быть реализованы в виде конкретной электрической цепи.

Синтез двухполюсника лестничной (цепной) схемой

Теория нелинейных цепей Нелинейные цепи постоянного тока Нелинейные элементы, их характеристики и параметры В теории линейных цепей предполагалось, что параметры всех элементов цепи являются постоянными величинами, не зависящих от токов и напряжений. Каждому идеальному элементу цепи приписывалось определенное значение его параметра: резистору – сопротивление R , катушке - индуктивность L, конденсатору – емкость C . Физические характеристики таких элементов (u=R×i – для резистора , ψ =L×i – для катушки, q=C×u – для конденсатора) описываются уравнением прямой линии y = a×x, поэтому такие элементы получили общее название линейных, а электрические цепи, состоящие из таких элементов, также называются линейными.

Нелинейные цепи и их свойства Электрическая цепь называется нелинейной, если она содержит хотя бы один нелинейный элемент. Состояние нелинейной цепи постоянного тока в установившемся режиме можно описать системой нелинейных алгебраических уравнений, составленных для схемы цепи по законам Кирхгофа. В математике не существует стандартных методов решения систем нелинейных алгебраических уравнений, и, как следствие, на практике не существует общих методов расчета нелинейных цепей постоянного тока, таких, как метод контурных токов и метод узловых потенциалов для линейных цепей.

Графический метод расчета простых нелинейных цепей Сущность графического метода расчета состоит в том, что решение нелинейных уравнений, составленных для схемы по законам Кирхгофа, выполняется графически путем графического сложения соответствующих ВАХ элементов.

Графический метод расчета нелинейной цепи с несколькими источниками ЭДС Графический метод расчета можно применять также и для более сложных схем с несколькими источниками ЭДС. Последовательность графических операций при решении одной и той же задачи может быть различной и зависит от выбора алгоритма решения.

Комбинированный графоаналитический метод расчета нелинейной цепи с одним или двумя нелинейными элементами Если схема нелинейной цепи содержит только один нелинейный элемент НЭ с заданной ВАХ, то расчет токов и напряжений в такой схеме может быть выполнен комбинированным методом в три этапа.

Аппроксимация ВАХ нелинейных элементов Вольтамперные характеристики нелинейных элементов на практике чаще всего получают экспериментальным путем и представляют их или в графической форме [в виде графической диаграммы функции ], или в табличной форме [в виде таблицы координат точек функции ]. При аналитических методах расчета нелинейных цепей к ВАХ предъявляются требования, чтобы они были представлены в аналитической форме, т.е. в виде аналитического выражения.

Пример. Электрическая цепь состоит из последовательно включенных источника ЭДС Е, линейного резистора R1 и нелинейного элемента НЭ2

Метод эквивалентного генератора (метод активного двухполюсника). Для нахождения тока в произвольной ветви всю внешнюю по отношению к ней электрическую цепь представляют в виде некоторого эквивалентного генератора с ЭДС Ег и с сопротивлением Rг. Тогда ток в этой ветви можно определить по закону Ома. ЭДС эквивалентного генератора Ег и его внутреннее сопротивление Rг равны соответственно разности потенциалов и сопротивлению между точками (узлами) электрической цепи, к которым подключена ветвь с искомым током в режиме холостого хода, т.е. в режиме, когда эта ветвь отключена.


Классический метод расчета переходных процессов