Физические законы в электротехнике Электрические цепи переменного синусоидального тока

Расчет электрической цепи постоянного и переменного тока

Топологические методы расчета электрических цепей

Топологические определения схемы

С появлением ЭВМ и их широким применением для решения сложных математических задач были разработаны специальные топологические расчёта сложных электрических цепей, графов и матриц.

Схема сложной электрической цепи (рис. 83а) может быть заменена (представлена) направленным графом (рис. 83б) с соблюдением следующих условий:

1)узлы графа соответствуют узлам схемы;

2)ветви графа соответствуют ветвям схемы;

3) направление ветвей соответствует направлению токов в ветвях схемы.

Любая часть графа называется подграфом. Минимальный связанный подграф, соединяющий все узлы графа и не образующий контуров, называется деревом графа (на схеме графа обозначается жирной линией). Для конкретного графа может быть составлено определенное множество вариантов деревьев, но в расчете схемы принимается любой из вариантов. Ветви графа, не входящие в его дерево, называются связями или хордами.

Структура графа и соответственно структура электрической схемы может быть описана с помощью топологических матриц или матриц соединения. Таких матриц несколько, для расчета электрических цепей используются две основные:   - матрица соединений «узлы-ветви» и - матрица соединений «контуры-ветви». 

 В общем случае сложная схема содержит «m» ветвей и «n» узлов, при этом максимальное число ветвей зависит от числа узлов: .

Составим таблицу соединений «узлы-ветви» руководствуясь следующими правилами:

1 – ветвь выходит из узла,

-1 – ветвь входит в узел,

0 – отсутствие связи с узлом.

Т а б л и ц а 1

№ узла \ № ветви

1

2

3

4

5

6

1

1

-1

0

1

0

0

2

-1

0

-1

0

1

0

3

0

1

1

0

0

-1

4

0

0

0

-1

-1

1

Так как каждая ветвь имеет только один вход (-1) и один выход (+1), то сумма чисел по вертикали для любого столбца равна нулю. Из этого следует, что независимыми являются только 3 из 4 строк таблицы. Матрица соединений  «узлы-ветви» (табл. 2) получается из приведенной выше таблицы путем вычеркивания любой строки (например, строки №4):

Т а б л и ц а 2

№ узла \ № ветви

1

2

3

4

5

6

1

1

-1

1

2

-1

-1

1

3

1

1

-1

Размерность матрицы соединений  «узлы-ветви» равна , где n-1 – число независимых узлов, m – число ветвей.

Независимыми называются контуры графа, образованные одной из хорд и ветвями дерева. Число независимых контуров соответствующих числу хорд графа: , контуры нумеруются по номеру хорды (1, 2, 3). Направление обхода контура принимается по направлению хорды, которая входит в состав этого контура.

 Составим таблицу соединений «контуры-ветви», руководствуясь следующими правилами:

1 – направление ветви совпадает с направлением обхода контура,

-1 – направление ветви не совпадает с направлением обхода контура,

0 - ветвь не входит в контур.

Т а б л и ц а 3

№ контура \ № ветви

1

2

3

4

5

6

1

1

0

0

-1

1

0

2

0

1

0

1

0

1

3

0

0

1

0

1

1

Данная таблица получила название матрицы соединений  - «контуры-ветви».Размерность матрицы соединений  равна , где – число независимых контуров, m – число ветвей.

Если матрицы соединений  и  составлены верно, то должно выполняться условие: .

Уравнения Ома и Кирхгофа в матричной форме

Если в исследуемой сложной схеме содержатся параллельно включенные ветви, то для составления матриц соединений такие ветви необходимо заменить (объединить) одной эквивалентной ветвью.

В общем случае любая ветвь схемы кроме комплексного сопротивления (проводимости)  может содержать источник ЭДС Ек, источник тока Jк. Схема и граф обобщенной ветви показаны на рис. 1а, б:

Ток ветви Iк, напряжение ветви Uк = j1 - j2.

Из потенциального уравнения ветви  следуют:

- уравнения Ома для к-ой ветви.

Для всех «m» ветвей составим систему уравнений по этой форме:

Заменим полученную систему из «m» уравнений матричной формой. Для этой цели введем следующие обозначения матриц:

- столбцовые матрицы соответственно напряжений, токов, источников тока и источников ЭДС.

  ; 

Уравнения Ома в матричной форме получат вид:

 

Уравнения Кирхгофа в обычной форме имеют вид:  - первый закон Кирхгофа для узлов, - второй закон Кирхгофа для контуров.

Система уравнений Кирхгофа в матричной форме получается через матрицы соединений  и :

Составленная система уравнений содержит “m” неизвестных токов и “m” неизвестных напряжений, всего 2“m” неизвестных, и непосредственно не может быть решена.

Сделаем подстановку матрицы  из матричных уравнений закона Ома, получим:

Для сравнения приведем те же уравнения в обычной форме:

Сделаем подстановку матрицы  из матричного уравнения закона Ома, получим:

Для сравнения приведем те же уравнения в обычной форме:

Контурные уравнения в матричной форме

Электрические цепи трехфазного тока. Трехфазная система Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .

Способы соединения обмоток трехфазных генераторов В трехфазном генераторе различают фазные и линейные напряжения. Фазными называются напряжения между началами и концами фазных обмоток или между одним из линейных выводов А, В, С и нулевым выводом N. Фазные напряжения равны фазным ЭДС: UА=ЕА, UВ=ЕВ, UС=ЕС (индекс N при фазных напряжениях опускается, так как φN = 0). Линейными называются напряжения между двумя линейными выводами А, В, С. Линейные напряжения равны векторной разности двух фазных напряжений: UАВ =UА -UВ; UВС =UВ -UС; UСА =UС -UА .

Способы соединения фаз трехфазных приемников. Приемники трехфазного тока могут подключаться к генератору по двум схемам – звезды () и треугольника (). Как известно, на выходе трехфазного генератора получаются два напряжение (линейное и фазное), отличающиеся в Uл/Uф = раз. С другой стороны каждый приёмник энергии рассчитан на работу при определенном напряжении, которое называется номинальным. Схема соединения фаз приемника должна обеспечить подключение его фаз номинальное фазное напряжение. Таким образом, выбор схемы соединения фаз трехфазного приемника зависит от соотношения номинальных напряжений приемника и генератора (сети).

точек разрыва. При этом нужно заменить источники ЭДС и тока их эквивалентными сопротивлениями, т.е. заменить источники ЭДС перемычкой, а источники тока разрывом между точками подключения. После чего, заменить в выражении комплексного сопротивления произведения jw на p и, приравняв полученное выражение нулю, решить уравнение относительно p. Представить мгновенные значения токов через индуктивные элементы и напряжений на ёмкостных элементах в виде
Электрические цепи переменного синусоидального тока