Геометрические приложения определенного интеграла

Примеры решения задач Контрольная по математике

Пример . Решить методом Крамера систему уравнений:

  x1 + x2 + x3 + x4 = 5,

 x1 + 2x2 - x3 + 4x4 = -2,

 2x1 - 3x2 - x3 - 5x4 = -2,

 3x1 + x2 +2x3 + 11 x4 = 0.

Решение. Главный определитель этой системы

D =  = -142 ¹ 0,

значит, система имеет единственное решение. Вычислим вспомогательные определители D i (i=), получающиеся из определителя D путем замены в нем столбца, состоящего из коэффициентов при xi, столбцом из свободных членов:

D 1 =  = - 142, D 2 =  = - 284,

D 3 =  = - 426, D 4 =  = 142.

Отсюда x1 = D 1/D = 1, x2 = D 2/D = 2, x3 = D 3/D = 3, x4 = D 4/D = -1, решение системы - вектор С=(1, 2, 3, -1)T.

Миноры.

Выше было использовано понятие дополнительного минора матрицы. Дадим определение минора матрицы.

 Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется минором матрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.

 Заметим, что вышесказанное применимо не только к квадратным матрицам, но и к прямоугольным.

Если вычеркнуть из исходной квадратной матрицы А выделенные строки и столбцы, то определитель полученной матрицы будет являться дополнительным минором.

Алгебраические дополнения.

Определение. Алгебраическим дополнением минора матрицы называется  его дополнительный минор , умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.

 В частном случае, алгебраическим дополнением элемента матрицы называется его дополнительный минор, взятый со своим знаком, если сумма номеров столбца и строки, на которых стоит элемент, есть число четное и с противоположным знаком, если нечетное.

 Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, … ,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.

Знакопеременные ряды. Так мы будем называть ряды, которые содержат бесконечные множества как положительных, так и отрицательных членов. Естественно попытаться свести исследование сходимости таких рядов к исследованию сходимости рядов с положительными членами, для которых имеются рассмотренные выше тонкие признаки сходимости, поэтому введём понятие абсолютной сходимости
Неопределенный интеграл в экономике