Геометрические приложения определенного интеграла

Примеры решения задач Контрольная по математике

Пример. Решить систему уравнений методом Гаусса:

 x + y - 3z = 2,

 3x - 2y + z = - 1,

 2x + y - 2z = 0.

Решение. Выпишем расширенную матрицу данной системы

и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:

  ~ ;

б) третью строку умножим на (-5) и прибавим к ней вторую:

.

В результате всех этих преобразований данная система приводится к треугольному виду:

  x + y - 3z = 2,

 -5y + 10z = -7,

 - 10z = 13.

Из последнего уравнения находим z = -1,3. Подставляя это значение во второе уравнение, имеем y = -1,2. Далее из первого уравнения получим x = - 0,7. Пример:. Даны матрицы А = , В = . Найти det (AB).

1-й способ: det A = 4 – 6 = -2; det B = 15 – 2 = 13; det (AB) = det A ×det B = -26.

2- й способ: AB = , det (AB) = 7×18 - 8×19 = 126 –

 – 152 = -26.

Элементарные преобразования матрицы.

Определение. Элементарными преобразованиями матрицы назовем следующие преобразования:

 1) умножение строки на число, отличное от нуля;

 2) прибавление к элемнтам одной строки элементов другой строки;

 3) перестановка строк;

 4) вычеркивание (удаление) одной из одинаковых строк (столбцов);

 5) транспонирование;

  Те же операции, применяемые для столбцов, также называются элементарными преобразованиями.

С помощью элементарных преобразований можно к какой-либо строке или столбцу прибавить линейную комбинацию остальных строк ( столбцов ).

Знакопеременные ряды. Так мы будем называть ряды, которые содержат бесконечные множества как положительных, так и отрицательных членов. Естественно попытаться свести исследование сходимости таких рядов к исследованию сходимости рядов с положительными членами, для которых имеются рассмотренные выше тонкие признаки сходимости, поэтому введём понятие абсолютной сходимости
Неопределенный интеграл в экономике