Вычислить длины дуг кривых

Методы интегрирования Контрольная по математике

Далее разберём задачу о вычислении несобственных интегралов.

Определённый интеграл, который рассматривался в предыдущей задаче, вычисляется при двух предположениях:

отрезок интегрирования [a,b] конечен

подынтегральная функция на этом отрезке непрерывна

При таких предположениях интеграл называется собственным интегралом. В том случае, если отрезок интегрирования бесконечен или конечен, но подынтегральная функция на этом отрезке терпит разрыв, интеграл называется несобственным интегралом.

Несобственный интеграл с бесконечными пределами.

Пусть функция f(x) в промежутке  непрерывна. Интегралом от f(x) в пределах между  называется предел интеграла, взятого от , т.е.

Это несобственный интеграл.

Если конечный предел в правой части существует, то несобственный интеграл называется сходящимся, а функция f(x)- интегрируемой на . Если этот предел бесконечен или не существует, то интеграл называется расходящимся.

Интеграл  

  для любого a.

Пример 1. Вычислить

а) p¹1

Объём цилиндрического тела.

Двойной интеграл.

Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).

Рисунок 1. Цилиндрическое тело

Объём цилиндрического тела можно вычислить приближённо, заменив его ступенчатой фигурой следующим образом.

1. Область D произвольным образом разбивается на конечное число п элементарных областей (ячеек) D1, D2,..., Dn, площади которых обозначим соответственно ΔS, ΔS2 ,..., ΔSn. Диаметром ячейки называют наибольшее расстояние между двумя точками на её границе и обозначают diamDi.

Выберем в каждой ячейке Di произвольную точку и вычислим в ней значение. Составим сумму вида:

Каждое  слагаемое в сумме вычисляет объём прямого цилиндра с основанием Di и высотой .

Сумма (1) называется интегральной уммой для функции f(x,y) по области D. Предел интегральной суммы (1) при max diamDi→0 (n→∞) называется двойным интегралом от функции f(x,y) по области D:

В обозначении двойного интеграла D-область интегрирования f(x,y) - подынтегральная функция, dS-дифференциал площади, который можно заменить произведением дифференциалов независимых переменных dxdy.

Формула (2) позволяет вычислить объём цилиндри-ческого тела при f(x,y)>0, в чём и заключается геометрический смысл двойного интеграла.

В общем случае, если функция f(x, у) непрерывна в замкнутой области D, то двойной интеграл существует (существует предел интегральной суммы (2)) и не зависит от способа разбиения области D на частичные и от выбора точек   в них.

Вычислить определенный интеграл 

называется несобственным интегралом. Вычислим 

Разберём задачу вычислении приближённого значения определённых интегралов по формуле Симпсона.

Вычисление частных производных функции нескольких независимых переменных производится по тем же правилам, по которым вычисляются производные функции одной независимой переменной, следует лишь считать постоянными все независимые переменные, кроме той, по которой вычисляется частная производная. Пример Дана функция двух переменных . Найти все частные производные первого и второго порядков. Полное приращение функции определяется по формуле: где - приращения независимых переменных. По определению приращения независимых переменных  и их дифференциалы dx, dy, dz – числа равные между собой.

Проверить, удовлетворяет ли данная функция  указанному уравнению . Определить градиент и производную заданной функции z = ln(x+y) в т. M0(1,3) в направлении линии y2 = 9x в сторону возрастания аргумента x.
Вычислить производную функции