Тренажер Лунный степпер

Радиоуправляемый квадрокоптер

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Производная, интегралы примеры решений

Под пространством мы до сих пор понимали реально существующее пространство трех измерений: ширины, длины и высоты. Результатом такого процесса абстрагирования от конкретной сущности 1, 2, 3-мерных пространств явилось понятие n-мерного пространства (пространства размерности n, n>3).

Пример. Вычислить определитель D = , разложив его по элементам второго столбца.

Решение. Разложим определитель по элементам второго столбца:

D = a12A12 + a22A22+a32A32=

  .

Пример. Вычислить определитель

,

в котором все элементы по одну сторону от главной диагонали равны нулю.

Решение. Разложим определитель А по первой строке:

.

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

.

И так далее. После n шагов придем к равенству A = а11 а22... ann

Пример Вычислить определитель .

Решение. Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель: , равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.

Увы, нам придется вводить ограничения на применимость новых операций, так как в некоторых случаях они выводят нас за рамки натуральных чисел, а другие числа мы еще не определили. Так что будем пока считать, что нельзя вычитать большее из меньшего, и делить на число, которое не укладывается нацело в делимом. Но с этими ограничениями мы можем уже записывать числовые выражения.
[an error occurred while processing this directive] Методы интегрирования