Производная, интегралы примеры решений

Суть метода неопределённых коэффициентов состоит в том, что вид сомножителей, на которые разлагается данный многочлен, угадывается, а коэффициенты этих сомножителей (также многочленов) определятся путём перемножения сомножителей и приравнивания коэффициентов при одинаковых степенях переменной
Основные методы интегрирования

Пример . Вычислить ò dx/(x+2).

Решение. Обозначим t=x+2, тогда dx=dt, ò dx/(x+2) = ò dt/t = ln ït ï+C =
= ln ïx+2 ï+C.

Пример . Найти ò tg x dx.

Решение. ò tg x dx = ò sin x/cos x dx = - ò d(cos x)/ cos x. Пусть t=cos x, тогда ò tg x dx = - ò dt/t = - ln ït ï+C = - ln ïcos x ï+C.

Пример . Найти ò dx/sin x.

Решение.

Пример. Найти .

Решение.  =  

Метод группировки слагаемых, как правило, применяется совместно с другими методами разложения на множители и чаще всего с методом вынесения за скобки. Суть метода состоит в том, что все слагаемые данного многочлена перегруппировываются таким образом, чтобы в каждой группе, возможно после вынесения общего множителя за скобки, образовалось бы одно и то же выражение.
Методы интегрирования