Элементы векторной алгебры и аналитической геометрии

Элементы векторной алгебры и аналитической геометрии

Теоремы о существовании и гладкости неявных функций и их геометрическая интерпретация. Формулы для частных производных и дифференциалов неявных функций. Теорема о существовании и гладкости обратной функции как частный случай теоремы о неявной функции

Решение систем линейных алгебраических уравнений методом Гаусса

Возвратимся теперь к нашей первой теме – матрицам. Рассмотрим теперь прямоугольную матрицу,

имеющую m строк и n столбцов. Ее называют матрица размером m на n. А(mхn). Выделим в этой матрице произвольные к строк и к столбцов. Они образуют квадратную матрицу B(kхk)

Например

Минором К-ого порядка матрицы А называется определитель квадратной матрицы, получающейся из данной матрицы выделением произвольных к строк и к столбцов.

Ѕ BЅ =detB- является минором третьего порядка.

Минором второго порядка является, например определитель

Сами элементы матрицы можно рассматривать как миноры первого порядка. Какие-то из миноров равны нулю, какие-то нет. Рангом матрицы называется наибольший из порядков ее миноров, отличных от нуля. Если ранг А обозначаемый r (A) равен r, то это означает, что в А имеется хотя бы один отличный от нуля минор порядка r, но всякий минор, порядка больше чем r, равен нулю.

Например, найдем ранг матрицы

1. Проверяем минор 4 порядка

Ѕ AЅ =0, т.к. матрица содержит нулевой столбец.

2. Проверяем миноры 3 порядка

Итак, процесс вычислений миноров прекращаем, поскольку миноров 4 порядка, не равных нулю нет, а минор 3-го порядка найден. Значит r(A)=3.

. Частные производные и дифференциалы порядка выше первого. Теорема о равенстве смешанных частных производных. Формула Тейлора для функций нескольких переменных. Матрица Гессе и гессиан.
Расчет мостового выпрямителя с фильтром Матрицы и определители