Элементы векторной алгебры и аналитической геометрии sublata.com

Элементы векторной алгебры и аналитической геометрии

Теорема о среднем значении. Определенный интеграл с переменным верхним пределом и его производная по этому пределу. Формула Ньютона-Лейбница. Вторая основная теорема интегрального исчисления (о существовании определенного интеграла у непрерывной функции).

Аналитическая геометрия

Кривые второго порядка на плоскости.

Кривые второго порядка - это линии на плоскости, координаты точек которых связаны уравнениями второй степени относительно х и у в декартовой системе координат. Рассмотрим следующие виды кривых второго порядка: окружность, эллипс, гипербола и парабола.

Окружность - это геометрическое место точек, равноудаленных от одной фиксированной точки (центра). Расстояние от точек окружности до центра называется радиусом окружности.

Каноническое уравнение окружности (х – х0)2 + (у – у0)2 = R2.

Например, построим линию, заданную уравнением х2 - х + у2 - у = 0. Приведем к стандартному виду. Для этого выделим полный квадрат разности для х и для у.

Приведя уравнение кривой второго порядка к каноническому виду видим, что наша кривая есть окружность с центром в точке

Дифференцируемые ФНП. Частные производные и частные дифференциалы. Градиент ФНП. Дифференцируемость ФНП. Главная линейная часть приращения ФНП. Полный дифференциал ФНП. Достаточное условие дифференцируемости ФНП.
Расчет плоской рамы на устойчивость Матрицы и определители